A monomial basis for the holomorphic functions on $c_{0}$
HTML articles powered by AMS MathViewer
- by Seán Dineen and Jorge Mujica
- Proc. Amer. Math. Soc. 141 (2013), 1663-1672
- DOI: https://doi.org/10.1090/S0002-9939-2012-11436-4
- Published electronically: November 2, 2012
- PDF | Request permission
Abstract:
For over thirty years it has been known that the monomials form a basis for the $n$-homogeneous polynomials on certain infinite dimensional Banach spaces. Recently, Defant and Kalton have shown that these are never unconditional. In this article we show that the monomials form a basis for both the holomorphic functions and the holomorphic functions of bounded type on $c_{0}$, both with their natural topologies.References
- Raymundo Alencar, On reflexivity and basis for $P(^mE)$, Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 2, 131–138. MR 845536
- Andreas Defant and Nigel Kalton, Unconditionality in spaces of $m$-homogeneous polynomials, Q. J. Math. 56 (2005), no. 1, 53–64. MR 2124579, DOI 10.1093/qmath/hah022
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- Verónica Dimant and Seán Dineen, Banach subspaces of spaces of holomorphic functions and related topics, Math. Scand. 83 (1998), no. 1, 142–160. MR 1662092, DOI 10.7146/math.scand.a-13846
- Seán Dineen, Complex analysis in locally convex spaces, Notas de Matemática [Mathematical Notes], vol. 83, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 640093
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- P. Galindo, M. Maestre, and P. Rueda, Biduality in spaces of holomorphic functions, Math. Scand. 86 (2000), no. 1, 5–16. MR 1738512, DOI 10.7146/math.scand.a-14278
- Bogdan C. Grecu and Raymond A. Ryan, Polynomials on Banach spaces with unconditional bases, Proc. Amer. Math. Soc. 133 (2005), no. 4, 1083–1091. MR 2117209, DOI 10.1090/S0002-9939-04-07738-X
- Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257, DOI 10.1007/978-3-322-90559-8
- Mário C. Matos, On holomorphy in Banach spaces and absolute convergence of Fourier series, Portugal. Math. 45 (1988), no. 4, 429–450. MR 982911
- Jorge Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR 842435
- Raymond A. Ryan, Holomorphic mappings on $l_1$, Trans. Amer. Math. Soc. 302 (1987), no. 2, 797–811. MR 891648, DOI 10.1090/S0002-9947-1987-0891648-7
- R.A. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Thesis, Trinity College Dublin, 1980.
- Milena Venkova, Global Schauder decompositions of locally convex spaces, Math. Scand. 101 (2007), no. 1, 65–82. MR 2353242, DOI 10.7146/math.scand.a-15032
Bibliographic Information
- Seán Dineen
- Affiliation: School of Mathematical Sciences, University College Dublin, Dublin 4, Ireland
- Email: sean.dineen@ucd.ie
- Jorge Mujica
- Affiliation: IMECC-UNICAMP, Rua Sergio Buarque de Holanda 651, 13083-859 Campinas, SP, Brazil
- Email: mujica@ime.unicamp.br
- Received by editor(s): March 4, 2011
- Received by editor(s) in revised form: July 5, 2011, and September 6, 2011
- Published electronically: November 2, 2012
- Communicated by: Thomas Schlumprecht
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 1663-1672
- MSC (2010): Primary 46G20, 32A05
- DOI: https://doi.org/10.1090/S0002-9939-2012-11436-4
- MathSciNet review: 3020853