On the digits of squares and the distribution of quadratic subsequences of digital sequences
HTML articles powered by AMS MathViewer
- by Roswitha Hofer, Gerhard Larcher and Heidrun Zellinger
- Proc. Amer. Math. Soc. 141 (2013), 1551-1565
- DOI: https://doi.org/10.1090/S0002-9939-2012-11448-0
- Published electronically: October 31, 2012
- PDF | Request permission
Abstract:
Let $q$ be a prime and $\gamma =(\gamma _0, \gamma _1, \gamma _2, \dots )$ with $\gamma _i\in \{0, \dots , q-1\}$ and $\gamma _i=0$ for $i\geq i_0$ be a weight sequence.
We study $\lim _{N\rightarrow \infty }{\#\left \{0\leq n< N|s_{q,\gamma }(n^2)\equiv d (\text {mod }q)\right \}}/N$ with $s_{q,\gamma }(n^2)$ the weighted sum of digits of $n^2$ in base $q$ and we use the results to classify the digital sequences $\left (\boldsymbol {x}_n\right )_{n\geq 0}$ in the sense of Niederreiter, generated by matrices with finite rows, for which $\left (\boldsymbol {x}_{n^2}\right )_{n\geq 0}$ is uniformly distributed. Finally we derive an upper bound for the star discrepancy of these uniformly distributed subsequences.
References
- Josef Dick and Friedrich Pillichshammer, Digital nets and sequences, Cambridge University Press, Cambridge, 2010. Discrepancy theory and quasi-Monte Carlo integration. MR 2683394, DOI 10.1017/CBO9780511761188
- Michael Drmota and Joël Rivat, The sum-of-digits function of squares, J. London Math. Soc. (2) 72 (2005), no. 2, 273–292. MR 2156654, DOI 10.1112/S0024610705006769
- Michael Drmota and Robert F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics, vol. 1651, Springer-Verlag, Berlin, 1997. MR 1470456, DOI 10.1007/BFb0093404
- P. Erdös, On the distribution function of additive functions, Ann. of Math. (2) 47 (1946), 1–20. MR 15424, DOI 10.2307/1969031
- Roswitha Hofer, Peter Kritzer, Gerhard Larcher, and Friedrich Pillichshammer, Distribution properties of generalized van der Corput-Halton sequences and their subsequences, Int. J. Number Theory 5 (2009), no. 4, 719–746. MR 2532267, DOI 10.1142/S1793042109002328
- Roswitha Hofer and Gerhard Larcher, On existence and discrepancy of certain digital Niederreiter-Halton sequences, Acta Arith. 141 (2010), no. 4, 369–394. MR 2587294, DOI 10.4064/aa141-4-5
- Roswitha Hofer, On subsequences of Niederreiter-Halton sequences, Monte Carlo and quasi-Monte Carlo methods 2008, Springer, Berlin, 2009, pp. 423–438. MR 2743911, DOI 10.1007/978-3-642-04107-5_{2}7
- Edmund Hlawka and Johannes Schoissengeier, Zahlentheorie, Vorlesungen über Mathematik, Manzsche Verlags- und Universitätsbuchhandlung, Vienna, 1979 (German). Eine Einführung. MR 548868
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Gerhard Larcher and Harald Niederreiter, Generalized $(t,s)$-sequences, Kronecker-type sequences, and Diophantine approximations of formal Laurent series, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2051–2073. MR 1290724, DOI 10.1090/S0002-9947-1995-1290724-1
- Christian Mauduit and Joël Rivat, La somme des chiffres des carrés, Acta Math. 203 (2009), no. 1, 107–148 (French). MR 2545827, DOI 10.1007/s11511-009-0040-0
- Harald Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1172997, DOI 10.1137/1.9781611970081
- Manfred Peter, The summatory function of the sum-of-digits function on polynomial sequences, Acta Arith. 104 (2002), no. 1, 85–96. MR 1913736, DOI 10.4064/aa104-1-4
- Helmut Prodinger and Stephan Wagner, The digit generating function of a polynomial, J. Number Theory 129 (2009), no. 6, 1325–1337. MR 2521476, DOI 10.1016/j.jnt.2009.01.011
- I. M. Vinogradov, On an estimate of trigonometric sums with prime numbers, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 225–248 (Russian). MR 0029418
Bibliographic Information
- Roswitha Hofer
- Affiliation: Institute of Financial Mathematics, University of Linz, Altenbergerstr. 69, 4040 Linz, Austria
- MR Author ID: 824746
- Email: roswitha.hofer@jku.at
- Gerhard Larcher
- Affiliation: Institute of Financial Mathematics, University of Linz, Altenbergerstr. 69, 4040 Linz, Austria
- Email: gerhard.larcher@jku.at
- Heidrun Zellinger
- Affiliation: Institute of Financial Mathematics, University of Linz, Altenbergerstr. 69, 4040 Linz, Austria
- Email: heidrun.zellinger@jku.at
- Received by editor(s): April 26, 2011
- Received by editor(s) in revised form: September 5, 2011
- Published electronically: October 31, 2012
- Additional Notes: The first author was supported by the Austrian Science Fund under Project Nr. P21943.
The second author was supported by the Austrian Science Fund under Projects Nr. P21196 and P21943.
The third author is a recipient of a DOC-fForte Grant of the Austrian Academy of Sciences at the Institute of Financial Mathematics at the University of Linz (Austria) - Communicated by: Matthew A. Papanikolas
- © Copyright 2012 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 1551-1565
- MSC (2010): Primary 11K06, 11K31, 11K38
- DOI: https://doi.org/10.1090/S0002-9939-2012-11448-0
- MathSciNet review: 3020843