ON A CLASS OF HEREDITARY CROSSED-PRODUCT ORDERS

JOHN S. KAuta

(Communicated by Birge Huisgen-Zimmermann)

Abstract. In this brief note, we revisit a class of crossed-product orders over discrete valuation rings introduced by D. E. Haile. We give simple but useful criteria, which involve only the two-cocycle associated with a given crossed-product order, for determining whether such an order is a hereditary order or a maximal order.

Let \(V \) be a discrete valuation ring (DVR), with quotient field \(F \), and let \(K/F \) be a finite Galois extension, with group \(G \), and let \(S \) be the integral closure of \(V \) in \(K \). Let \(f \in \mathbb{Z}^2(G,U(K)) \) be a normalized two-cocycle. If \(f(G \times G) \subseteq S^\# \), then one can construct a “crossed-product” \(V \)-algebra \(A_f = \sum_{\sigma \in G} Sx_{\sigma} \), with the usual rules of multiplication \((x_\sigma s = \sigma(s)x_\sigma) \) for all \(s \in S, \sigma \in G \) and \(x_\sigma x_\tau = f(\sigma,\tau)x_{\sigma \tau} \). Then \(A_f \) is associative, with identity \(1 = x_1 \), and center \(V = Vx_1 \).

Further, \(A_f \) is a \(V \)-order in the crossed-product \(F \)-algebra \(\Sigma_f = \sum_{\sigma \in G} Kx_\sigma = (K/F,G,f) \).

Two such cocycles \(f \) and \(g \) are said to be cohomologous over \(S \) (respectively cohomologous over \(K \)), denoted by \(f \sim_S g \) (respectively \(f \sim_K g \)), if there are elements \(\{c_\sigma \mid \sigma \in G\} \subseteq U(S) \) (respectively \(\{c_\sigma \mid \sigma \in G\} \subseteq K^\# \)) such that \(g(\sigma,\tau) = c_\sigma \sigma(c_\tau)c_{\sigma \tau}^{-1}f(\sigma,\tau) \) for all \(\sigma,\tau \in G \). Following [1], let \(H = \{\sigma \in G \mid f(\sigma,\sigma^{-1}) \in U(S)\} \). Then \(H \) is a subgroup of \(G \). On \(G/H \), the left coset space of \(G \) by \(H \), one can define a partial ordering by the rule \(\sigma H \leq \tau H \) if \(f(\sigma,\sigma^{-1}\tau) \in U(S) \). Then “\(\leq \)” is well-defined and depends only on the cohomology class of \(f \) over \(S \). Further, \(H \) is the unique least element. We call this partial ordering on \(G/H \) the graph of \(f \).

Such a setup was first formulated by Haile in [1], with the assumption that \(S \) is unramified over \(V \), wherein, among other things, conditions equivalent to such orders being maximal orders were considered. This is the class of crossed-product orders we shall study in this paper, always assuming that \(S \) is unramified over \(V \). We emphasize the fact that, since we do not require that \(f(G \times G) \subseteq U(S) \), this
theory constitutes a drastic departure from the classical theory of crossed-product orders over DVRs, such as can be found in [2].

Let us now fix additional notation to be used in the rest of the paper, most of it borrowed from [1] as before. If \(M \) is a maximal ideal of \(S \), let \(D_M \) be the decomposition group of \(M \), let \(K_M \) be the decomposition field, and let \(S_M \) be the localization of \(S \) at \(M \). The two-cocycle \(f : G \times G \rightarrow S^\# \) yields a two-cocycle \(f_{M} : D_M \times D_M \rightarrow S^\#_M \), determined by the restriction of \(f \) to \(D_M \times D_M \) and the inclusion of \(S^\# \) in \(S^\#_M \). Then \(A_{fM} = \sum_{\sigma \in D_M} S_M x_{\sigma} \) is a crossed-product order in \(\Sigma_f = \sum_{\sigma \in D_M} K x_{\sigma} = (K/K_M, D_M, f_M) \). In addition, we can obtain a twist of \(f \), described in [1] pp. 137-138] and denoted by \(\tilde{f} \), which depends on the choice of a maximal ideal \(M \) of \(S \), and the choice of a set of coset representatives of \(D_M \) in \(G \).

We also define \(F : G \times G \rightarrow S^\# \) by \(F(\sigma, \tau) = f(\sigma, \sigma^{-1} \tau) \) for \(\sigma, \tau \in G \). While \(\tilde{f} \) is a two-cocycle, \(F \) is not.

If \(B \) is a \(V \)-order of \(\Sigma_f \) containing \(A_f \), then by [1] Proposition 1.3], \(B = A_g = \sum_{\sigma \in G} S y_{\sigma} \) for some two-cocycle \(g : G \times G \rightarrow S^\# \), with \(g \sim_K f \). Moreover, the proof of [1] Proposition 1.3] shows that \(y_{\sigma} = k_{\sigma} x_{\sigma} \) for some \(k_{\sigma} \in K^\# \), with \(k_1 = 1 \), whence \(g \) is also a normalized two-cocycle.

We begin with a technical result.

Sublemma. Let \(\tau \in G \). If \(I_\tau = \prod_{f(\tau, \tau^{-1}) \notin M} M \), where \(M \) denotes a maximal ideal of \(S \), then \(I_\tau^{-1} = I_{\tau^{-1}} \).

Proof. We have

\[
I_\tau^{-1} = \prod_{f(\tau, \tau^{-1}) \notin M} M^{-1} = \prod_{f(\tau, \tau^{-1}) \notin M} M^{\tau^{-1}} = \prod_{f(\tau^{-1}, \tau) \notin M^\tau} M^{\tau^{-1}} = I_{\tau^{-1}}.
\]

\(\square \)

Theorem. The crossed-product order \(A_f \) is hereditary if and only if \(f(\tau, \tau^{-1}) \notin M^2 \) for all \(\tau \in G \) and every maximal ideal \(M \) of \(S \).

Proof. The theorem obviously holds if \(H = G \), in which case \(A_f \) is an Azumaya algebra over \(V \), so let us assume from now on that \(H \neq G \).

Suppose \(A_f \) is hereditary. First, assume \(A_f \) is a maximal order and \(S \) is a DVR. Let \(v \) be the valuation corresponding to \(S \) with value group \(\mathbb{Z} \). Then by [1] Theorem 2.3], \(H \) is a normal subgroup of \(G \) and \(G/H \) is cyclic. Further, there exists \(\sigma \in G \) such that \(v(f(\sigma, \sigma^{-1})) \leq 1 \), \(G/H = \langle \sigma H \rangle \), and the graph of \(f \) is the chain \(H \leq \sigma H \leq \sigma^2 H \leq \cdots \leq \sigma^m H \), where \(m = |G/H| \). Choose \(j \) maximal such that \(1 \leq j \leq m - 1 \) and \(v(f(\sigma^i, \sigma^{-i})) \leq 1 \forall 1 \leq i \leq j \). We always have \(\sigma H \leq \sigma^j H \); but if \(j < m - 1 \), then we also have \(\sigma^j H \leq \sigma^{j+1} H \). Hence if \(j < m - 1 \), then, from the cocycle identity \(f^{\sigma^j}(\sigma, \sigma^{-j}, \sigma^{-1}) f(\sigma^j, \sigma^{-1}) = f(\sigma^j, \sigma) f(\sigma^{j+1}, \sigma^{-j} \sigma^{-1}) \), we conclude that \(v(f(\sigma^j, \sigma^{-i})) \leq 1 \forall 1 \leq i \leq j + 1 \), a contradiction. So we must have \(j = m - 1 \), so that \(v(f(\sigma^i, \sigma^{-i})) \leq 1 \forall 1 \leq i \leq m - 1 \). If \(\tau \) is an arbitrary element of \(G \), then \(\tau = \sigma^h \) for some \(h \in H \) and some integer \(i, 0 \leq i \leq m - 1 \). Therefore, by [1] Lemma 3.6], \(v(f(\tau, \tau^{-1})) = v(F(\sigma^i h, 1)) = v(F(\sigma^i, 1)) = v(f(\sigma^i, \sigma^{-i})) \leq 1 \); that is, \(f(\tau, \tau^{-1}) \notin J(S)^2 \).

We maintain the assumption that \(A_f \) is a maximal order, but we now drop the condition that \(S \) is a DVR. By [1] Theorem 3.16], there exists a twist of \(f \), say \(\tilde{f} \), such that \(f \sim_S \tilde{f} \). By [1] Corollary 3.11], for any maximal ideal \(M \) of \(S \), \(A_{fM} \) is a maximal order in \(\Sigma_{fM} \), hence \(f_M(\tau, \tau^{-1}) \notin M^2 \forall \tau \in D_M \) by the preceding
crossed-product order for all τ. Thus, A_f is not a maximal order, then it is the intersection of finitely many maximal orders, say $A_{f_1}, A_{f_2}, \ldots, A_{f_l}$. Note that

$$A_{f_i} = \sum_{\tau \in G} S y_{\tau}^{(i)} = \sum_{\tau \in G} S k_{\tau}^{(i)} x_{\tau},$$

for some $k_{\tau}^{(i)} \in K$. Fix a $\sigma \in G$, and a maximal ideal N of S. Let v_N be the valuation corresponding to N, with value group \mathbb{Z}. Since

$$S = \bigcap_{i=1}^l S k_{\sigma}^{(i)},$$

there exists i_0 such that $v_N(k_{\sigma}^{(i_0)}) = 0$. Let $y = f_{i_0}$ and, for $\tau \in G$, let $k_\tau = k_{\sigma}^{(i_0)}$ and $y_\tau = y_{(i_0)}^{(i_0)}$, so that $A_g = \sum_{\tau \in G} S k_\tau x_\tau = \sum_{\tau \in G} S y_{\tau}$. By \cite{1} Proposition 3.1, $J(A_g) = \sum_{\tau \in G} I_{\tau} x_\tau$ and $J(A_g) = \sum_{\tau \in G} J_{\tau} y_{\tau}$, where

$$I_{\tau} = \prod_{\sigma \in G} M$$ and $$J_{\tau} = \prod_{\sigma \in G} M,$$

and M denotes a maximal ideal of S. Since A_f is a hereditary V-order in Σ_f and $A_f \subseteq A_g \subseteq \Sigma_f$, we have $J(A_g) \subseteq J(A_f)$, from which we conclude that $J_{\sigma^{-1}} y_{\sigma^{-1}} \subseteq I_{\sigma^{-1}} x_{\sigma^{-1}}$ and so $J_{\sigma^{-1}} k_{\sigma^{-1}} \subseteq I_{\sigma^{-1}}$. We have $y_{\sigma^{-1}} x_{\sigma^{-1}} = k_{\sigma^{-1}} x_{\sigma^{-1}} y_{\sigma^{-1}} = J_{\sigma^{-1}} k_{\sigma^{-1}} x_{\sigma^{-1}} k_{\sigma^{-1}} x_{\sigma^{-1}} = J_{\sigma^{-1}} f(\sigma^{-1}, \sigma) = (k_{\sigma^{-1}} f(\sigma^{-1}, \sigma)).$

On the other hand, $y_{\sigma^{-1}} x_{\sigma^{-1}} = J_{\sigma^{-1}} g(\sigma^{-1}, \sigma) = J_{\sigma^{-1}} g(\sigma^{-1}, \sigma)$. Since A_f is a maximal order and therefore $g(\sigma^{-1}, \sigma) \not\in M^2$ for every maximal ideal M of S, we see that $J_{\sigma^{-1}} g(\sigma^{-1}, \sigma) = J(V) S$ and so $y_{\sigma^{-1}} x_{\sigma^{-1}} = J(V) S$. Therefore $J(V) S \subseteq k_{\sigma} I_{\sigma} f(\sigma, \sigma^{-1})$. Since $v_N(k_{\sigma}) = 0$, we conclude that $f(\sigma, \sigma^{-1}) \not\in N^2$, and so $f(\tau, \tau^{-1}) \not\in M^2 \forall \tau \in G$ and any maximal ideal M of S.

Conversely, suppose that $f(\tau, \tau^{-1}) \not\in M^2$ for every maximal ideal M of S and every $\tau \in G$. Let $B = O_l(J(A_f))$, the left order of $J(A_f)$; that is, $B = \{x \in \Sigma_f \mid x J(A_f) \subseteq J(A_f)\}$. Since $\Sigma_f \supseteq B \supseteq A_f$, $B = \sum_{\tau \in G} S k_\tau x_\tau$, for some $k_\tau \in K^\#$. For each $\tau \in G$, we have $S \subseteq S k_\tau$, and we will now show that $S = S k_\tau$. As above, write $J(A_f) = \sum_{\tau \in G} I_{\tau} x_\tau$, with $I_{\tau} = \prod_{\sigma \in G} M$, where the product is taken over all maximal ideals M of S for which $f(\tau, \tau^{-1}) \not\in M$. Observe that $J(V) S = I_{\tau} f(\tau, \tau^{-1}) = k_{\tau} I_{\tau} f(\tau, \tau^{-1})$. Since $f(\tau, \tau^{-1}) \not\in M^2$ for every maximal ideal M of S, we must have $I_{\tau} f(\tau, \tau^{-1}) = J(V) S$, and so $J(V) S \subseteq k_{\tau} J(V) S \supseteq J(V) S$ and thus $S = S k_{\tau}$, as desired. This shows that $O_l(J(A_f)) = A_f$ and A_f is hereditary.

Not only can this criterion enable one to rapidly determine whether or not the crossed-product order A_f is hereditary, the utility of the theorem above is now demonstrated by the ease with which the following corollaries of it are obtained.

Corollary 1. The crossed-product order A_f is hereditary if and only if $f(\tau, \gamma) \not\in M^2$ for all $\tau, \gamma \in G$ and every maximal ideal M of S.

Proof. This follows from the cocycle identity $f^\tau(\tau^{-1}, \gamma) f(\tau, \gamma) = f(\tau, \tau^{-1})$.
In other words, the order A_f is hereditary if and only if the values of the two-cocycle f are all square-free.

Since A_f is a maximal order if and only if it is hereditary and primary, by combining our result and results in \cite{1}, we immediately have the following.

Corollary 2. Given a crossed-product order A_f,

1. it is a maximal order if and only if for every maximal ideal M of S, $f(\tau, \tau^{-1}) \not\in M^2$ for all $\tau \in G$, and there exists a set of right coset representatives g_1, g_2, \ldots, g_r of D_M in G (i.e., G is the disjoint union $\bigcup_i D_M g_i$) such that for all i, $f(g_i, g_i^{-1}) \not\in M$.
2. if S is a DVR, then it is a maximal order if and only if $f(\tau, \tau^{-1}) \not\in J(S)^2$ for all $\tau \in G$.

Proof. In either case, the primarity of A_f is guaranteed by \cite{1} Theorem 3.2 (see also \cite{1} Proposition 2.1(b)] when S is a DVR). □

The Theorem above can readily be put to effective use with the crossed-product orders in \cite{1} §4, for example. In that section, all the crossed-product orders involved are primary orders, and the two-cocycles are given in tabular form, with the values factorized into primes of S. Using our criterion, it now becomes a straightforward process to determine which of those orders are maximal orders and which are not, by simply consulting, in each case, the given table of values for the two-cocycle; the table whose entries are all square-free represents a maximal order. This determination can be made with little effort! In fact, if one knows that the crossed-product order A_f is a primary order, then determining whether or not it is a maximal order could even be easier, as the following result shows.

Corollary 3. Suppose the crossed-product order A_f is primary. Then it is a maximal order if and only if there exists a maximal ideal M of S such that $f(\tau, \tau^{-1}) \not\in M^2$ for all $\tau \in D_M$.

Proof. This follows from \cite{1} Corollary 3.11 and Proposition 2.1(b)]. □

Let L be an intermediate field of F and K, let G_L be the Galois group of K over L, let U be a valuation ring of L lying over V, and let T be the integral closure of U in K. Then one can obtain a two-cocycle $f_{L,U}$: $G_L \times G_L \to T^\#$ from f by restricting f to $G_L \times G_L$ and embedding $S^\#$ in $T^\#$. As before, $A_{f_{L,U}} = \sum_{\tau \in G_L} T x_\tau$ is a U-order in $G_{f_{L,U}} = \sum_{\tau \in G_L} K x_\tau = (K/L, G_L, f_{L,U})$.

Corollary 4. Suppose the crossed-product order A_f is hereditary. Then $A_{f_{L,U}}$ is a hereditary order in $G_{f_{L,U}}$ for each intermediate field L of F and K and for every valuation ring U of L lying over V.

This leads to the following.

Corollary 5. Suppose the crossed-product order A_f is hereditary. Then A_{f_m} is a maximal order in G_{f_m} for each maximal ideal M of S.

Proof. The order A_{f_m} is always primary, by \cite{1} Proposition 2.1(b)]. □

The following example illustrates two limitations of our theory, however.

Example. We give two crossed-product orders A_{f_1} and A_{f_2} with $f_1 \sim_K f_2$ and the graphs of f_1 and f_2 identical, but A_{f_1} is hereditary while A_{f_2} is not. Also, we give an example to demonstrate that the converse of Corollary 5 does not always hold.
Let $F = \mathbb{Q}(x)$, and let $K = \mathbb{Q}(i)(x)$. Then the Galois group $G = \langle \sigma \rangle$ is a group of order two, where σ is induced by the complex conjugation on $\mathbb{Q}(i)$. If $V = \mathbb{Q}[x]/(x^2 + 1)$, then S has two maximal ideals, namely $M_1 = (x + i)S$ and $M_2 = (x - i)S$, and $D_{M_1} = D_{M_2} = \{1\}$. Let $f_1, f_2 : G \times G \to S^\#$ be two-cocycles defined by $f_j(1, 1) = f_j(1, \sigma) = f_j(\sigma, 1) = 1$ and $f_1(\sigma, \sigma) = (x^2 + 1)x$, $f_2(\sigma, \sigma) = (x^2 + 1)^2x$.

Then $f_1 \sim_K f_2$, and the subgroup of G associated with either cocycle is $H = \{1\}$, so that the graphs of f_1 and f_2 are identical. Clearly, A_{f_1} is hereditary but A_{f_2} is not. We conclude that the property that a crossed-product order A_f is hereditary is not an intrinsic property of the graph of f.

Also, if we set $f = f_2$, we see that $A_{f_M} = S_M$ for each maximal ideal M of S, and therefore A_{f_M} is a maximal order in $\Sigma_{f_M} = K$ for each maximal ideal M of S, and yet A_f is not even hereditary (cf. [1] Corollary 3.11 and [2] Theorem 1]). This is the case because A_f is not primary, and also because $f(G \times G) \not\subseteq U(S)$. □

References

Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410, Brunei

E-mail address: john.kauta@ubd.edu.bn