INTRINSIC VOLUMES AND LINEAR CONTRACTIONS

GRIGORIS PAOURIS AND PETER PIVOVAROV

(Communicated by Thomas Schlumprecht)

Abstract. It is shown that intrinsic volumes of a convex body decrease under linear contractions.

Let $C \subset \mathbb{R}^N$ be a convex body and B^N_2 the Euclidean ball in \mathbb{R}^N. The Steiner formula expresses the volume of the Minkowski sum $C + \varepsilon B^N_2$ in terms of the intrinsic volumes V_0, V_1, \ldots, V_N of C:

$$\text{vol}_N(C + \varepsilon B^N_2) = \sum_{n=0}^{N} \omega_n V_{N-n}(C) \varepsilon^n.$$

Here $\text{vol}_N(\cdot)$ denotes N-dimensional Lebesgue measure and $\omega_n = \text{vol}_n(B^N_2)$. Of particular interest are V_1, V_{N-1} and V_N, which are multiples of the mean-width, surface area and volume, respectively. We refer the reader to [5] for background on intrinsic volumes. In addition to their role in convex geometry, intrinsic volumes also appear in connection with Gaussian processes; see, e.g., [9], [10] and the references therein.

The purpose of this note is to prove the following.

Proposition 1.1. Let $C \subset \mathbb{R}^N$ be a convex body and let S be a linear contraction; i.e., $\|Sx\|_2 \leq \|x\|_2$ for each $x \in \mathbb{R}^N$. Then for $n = 1, \ldots, N$,

$$V_n(SC) \leq V_n(C).$$

The case of V_1 and arbitrary contractions (not necessarily linear) is well-studied [6 Theorem 2 in §5], [1 Theorem 1]; see also [2, p. 177]. Of course for V_N one has $V_N(SC) = |\det(S)| \text{vol}_N(C)$. For other intrinsic volumes, we were unable to find Proposition 1.1 in the literature but noticed that it follows from some results in [4] and thought it was worthwhile to show the details.

Received by the editors September 16, 2011.

2010 Mathematics Subject Classification. Primary 52A20, 52A39, 52A40.

The first-named author is supported by the A. Sloan Foundation, BSF grant 2010288, and the U.S. National Science Foundation, grant DMS-0906150.

The second-named author held a Postdoctoral Fellowship award from the Natural Sciences and Engineering Research Council of Canada and was supported by the Department of Mathematics at Texas A&M University.
Particularly useful for our purpose is the Gaussian representation of intrinsic volumes, as in [10]; see also [8]. If \(\Gamma_{N,n} = [\gamma_{ij}] \) is an \(n \times N \) matrix with independent \(N(0,1) \) Gaussian entries, then the \(n \)-th intrinsic volume of \(C \subset \mathbb{R}^N \) is given by

\[
V_n(C) = \frac{(2\pi)^{n/2}}{\omega_n n!} \mathbb{E} \text{vol}_n(\Gamma_{N,n}C).
\]

As in [4], we say that a function \(F : (\mathbb{R}^n)^N \to \mathbb{R}^+ \) satisfies Groemer’s Convexity Condition, or simply (GCC), if for every \(z \in \mathbb{R}^n \) and for every \(y_1, \ldots, y_N \in z^\perp \) the function \(F_Y : \mathbb{R}^N \to \mathbb{R}^+ \) defined by

\[
F_Y(t) = F(y_1 + t_1 z, \ldots, y_N + t_N z)
\]

is even and convex. The latter definition was motivated by isoperimetric-type problems for random convex sets in [3]. In particular, by adapting [3, Lemma 3], it was shown in [4, Proposition 4.1] that for a convex body \(C \subset \mathbb{R}^N \), the function \(F : (\mathbb{R}^n)^N \to \mathbb{R}^+ \) defined by

\[
F(x_1, \ldots, x_N) = \text{vol}_n([x_1 \ldots x_N]C),
\]

where \([x_1 \ldots x_N]\) denotes the \(n \times N \) matrix with columns \(x_1, \ldots, x_N \), viewed as a linear operator from \(\mathbb{R}^N \) to \(\mathbb{R}^n \), satisfies (GCC). The latter property fits well with symmetrization techniques and can be used in various isoperimetric-type problems for the volume of random (and non-random) sets [4, Theorem 1.1].

For our present purpose, we require less than the (GCC) condition. In fact, we will use only the following consequence.

Lemma 1.2. If \(F : (\mathbb{R}^n)^N \to \mathbb{R}^+ \) satisfies (GCC), then for any \(x_1, \ldots, x_N \in \mathbb{R}^n \) and any \(1 \leq j \leq N \), the function

\[
R \ni s \mapsto F(x_1, \ldots, sx_j, \ldots, x_N)
\]

is convex.

The lemma is immediate since the restriction of a convex function to a line is itself convex.

Additionally, we will make use of the following elementary lemma (the proof is given in [4, Lemma 3.7]).

Lemma 1.3. Let \(\rho : \mathbb{R}^n \to \mathbb{R}^+ \) be a function such that

\[
R \ni s \mapsto \rho(sx)
\]

is convex for each \(x \in \mathbb{R}^n \). If \(X \) is a symmetric random vector with values in \(\mathbb{R}^n \), then

\[
R^+ \ni s \mapsto \mathbb{E} \rho(sX)
\]

is an increasing function.

Proof of Proposition 1.1. As noted above, the function \(F : (\mathbb{R}^n)^N \to \mathbb{R}^+ \) defined according to [4] satisfies (GCC). Let \(g_1, \ldots, g_N \) denote the columns of the Gaussian random matrix \(\Gamma_{N,n} \). If \(g_1, \ldots, g_N \) are fixed, then

\[
R \ni s \mapsto F(g_1, \ldots, g_{j-1}, sg_j, g_{j+1}, \ldots, g_N)
\]
is convex by Lemma 1.2. Letting E_j denote expectation with respect to g_j and applying Lemma 1.3, we have that

$$\mathbb{R}^+ \ni s \mapsto E_j F(g_1, \ldots, g_{j-1}, sg_j, g_{j+1}, \ldots, g_N)$$

is an increasing function.

Suppose first that S is represented by the $N \times N$ diagonal matrix $S = \text{diag}(1, \ldots, 1, s_j, 1, \ldots, 1)$, where $s_j \in [0, 1]$ is in the jth-column. Then

$$E_j F(g_1, \ldots, g_{j-1}, s_j g_j, g_{j+1}, \ldots, g_N) \leq E_j F(g_1, \ldots, g_{j-1}, g_j, g_{j+1}, \ldots, g_N)$$

and hence

$$(2\pi)^{-n/2} \omega_n n! V_n(SC) = E \text{vol}_n (\Gamma_{N,n}SC) = E F(g_1, \ldots, g_{j-1}, s_j g_j, g_{j+1}, \ldots, g_N) \leq E F(g_1, \ldots, g_{j-1}, g_j, g_{j+1}, \ldots, g_N) = (2\pi)^{-n/2} \omega_n n! V_n(C).$$

In the general case, using singular value decomposition, one writes $S = UDV^T$, where D is the diagonal matrix $\text{diag}(s_1, \ldots, s_N)$, and U and V are orthogonal. Since S is a contraction, its singular values satisfy $0 \leq s_i \leq 1$ for $i = 1, \ldots, N$.

To conclude, we use the fact that intrinsic volumes are invariant under orthogonal transformations and apply the latter argument iteratively.

\[\square\]

Remark 1.4. The latter proof uses ideas from [7, Lemma 2.7].

Acknowledgements

The authors thank A. Giannopoulos, R. Latała, R. Schneider, N. Tomczak-Jaegermann and R. Vitale for helpful discussions.

References

7. S. J. Szarek, Spaces with large distance to l^∞_n and random matrices, Amer. J. Math. 112 (1990), no. 6, 899–942. MR1081810 (91j:46023)
Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

E-mail address: grigoris@math.tamu.edu

Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

E-mail address: ppivovarov@math.tamu.edu

Current address: Department of Mathematics, University of Missouri, Columbia, Missouri 65211

E-mail address: pivovarovp@missouri.edu