On Kähler structures over symmetric products of a Riemann surface
HTML articles powered by AMS MathViewer
- by Indranil Biswas
- Proc. Amer. Math. Soc. 141 (2013), 1487-1492
- DOI: https://doi.org/10.1090/S0002-9939-2012-11732-0
- Published electronically: September 26, 2012
- PDF | Request permission
Abstract:
Given a positive integer $n$ and a compact connected Riemann surface $X$, we prove that the symmetric product $S^n(X)$ admits a Kähler form of nonnegative holomorphic bisectional curvature if and only if $\text {genus}(X) \leq 1$. If $n$ is greater than or equal to the gonality of $X$, we prove that $S^n(X)$ does not admit any Kähler form of nonpositive holomorphic sectional curvature. In particular, if $X$ is hyperelliptic, then $S^n(X)$ admits a Kähler form of nonpositive holomorphic sectional curvature if and only if $n = 1 \leq \text {genus}(X)$.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 131423, DOI 10.1112/plms/s3-7.1.414
- Indranil Biswas and Ugo Bruzzo, On semistable principal bundles over a complex projective manifold, Int. Math. Res. Not. IMRN 12 (2008), Art. ID rnn035, 28. MR 2426752, DOI 10.1093/imrn/rnn035
- M. Bökstedt and N. M. Romão, On the curvature of vortex moduli spaces, http://arxiv.org/abs/1010.1488.
- Lawrence Ein and Robert Lazarsfeld, Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 149–156. MR 1201380, DOI 10.1017/CBO9780511662652.011
- Phillip A. Griffiths, Two theorems on extensions of holomorphic mappings, Invent. Math. 14 (1971), 27–62. MR 293123, DOI 10.1007/BF01418742
- George R. Kempf, A problem of Narasimhan, Curves, Jacobians, and abelian varieties (Amherst, MA, 1990) Contemp. Math., vol. 136, Amer. Math. Soc., Providence, RI, 1992, pp. 283–286. MR 1188202, DOI 10.1090/conm/136/1188202
- Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, DOI 10.2307/1971241
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI 10.2307/1970710
- Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. MR 577360, DOI 10.1007/BF01390043
Bibliographic Information
- Indranil Biswas
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
- MR Author ID: 340073
- Email: indranil@math.tifr.res.in
- Received by editor(s): August 25, 2011
- Published electronically: September 26, 2012
- Communicated by: Varghese Mathai
- © Copyright 2012 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 1487-1492
- MSC (2010): Primary 14C20, 32Q05, 32Q10
- DOI: https://doi.org/10.1090/S0002-9939-2012-11732-0
- MathSciNet review: 3020836