Contractors for flows
HTML articles powered by AMS MathViewer
- by Delia Garijo, Andrew Goodall and Jaroslav Nešetřil
- Proc. Amer. Math. Soc. 141 (2013), 1849-1861
- DOI: https://doi.org/10.1090/S0002-9939-2012-11449-2
- Published electronically: December 4, 2012
- PDF | Request permission
Abstract:
We answer a question raised by Lovász and B. Szegedy [Contractors and connectors in graph algebras, J. Graph Theory 60:1 (2009)] asking for a contractor for the graph parameter counting the number of $B$-flows of a graph, where $B$ is a subset of a finite Abelian group closed under inverses. We prove our main result using the duality between flows and tensions and finite Fourier analysis.References
- Ilia Averbouch, Benny Godlin, and J. A. Makowsky, An extension of the bivariate chromatic polynomial, European J. Combin. 31 (2010), no. 1, 1–17. MR 2552585, DOI 10.1016/j.ejc.2009.05.006
- Norman Biggs, Interaction models, London Mathematical Society Lecture Note Series, No. 30, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Course given at Royal Holloway College, University of London, October–December 1976. MR 0674960, DOI 10.1017/CBO9780511662126
- Norman Biggs, Algebraic graph theory, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. MR 1271140
- Matt DeVos, Jaroslav Ne et il, and André Raspaud, On edge-maps whose inverse preserves flows or tensions, Graph theory in Paris, Trends Math., Birkhäuser, Basel, 2007, pp. 109–138. MR 2279171, DOI 10.1007/978-3-7643-7400-6_{1}0
- D. Garijo, A.J. Goodall and J. Nešetřil, On the number of $B$-flows of a graph, European J. Combin., to appear.
- Pierre de la Harpe and François Jaeger, Chromatic invariants for finite graphs: theme and polynomial variations, Linear Algebra Appl. 226/228 (1995), 687–722. MR 1344593, DOI 10.1016/0024-3795(95)00248-P
- Hamed Hatami and Serguei Norine, Undecidability of linear inequalities in graph homomorphism densities, J. Amer. Math. Soc. 24 (2011), no. 2, 547–565. MR 2748400, DOI 10.1090/S0894-0347-2010-00687-X
- W. Cary Huffman and Vera Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003. MR 1996953, DOI 10.1017/CBO9780511807077
- François Jaeger, Nowhere-zero flow problems, Selected topics in graph theory, 3, Academic Press, San Diego, CA, 1988, pp. 71–95. MR 1205397
- László Lovász and Balázs Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (2006), no. 6, 933–957. MR 2274085, DOI 10.1016/j.jctb.2006.05.002
- László Lovász and Balázs Szegedy, Contractors and connectors of graph algebras, J. Graph Theory 60 (2009), no. 1, 11–30. MR 2478356, DOI 10.1002/jgt.20343
- Alexander Schrijver, Graph invariants in the spin model, J. Combin. Theory Ser. B 99 (2009), no. 2, 502–511. MR 2482968, DOI 10.1016/j.jctb.2008.10.003
- Audrey Terras, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999. MR 1695775, DOI 10.1017/CBO9780511626265
- B.L. van der Waerden, Die lange Reichweite der regelmässigen Atomanordnung in Mischkristallen, Z. Physik 118 (1941), 473–488.
- Jay A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555–575. MR 1738408, DOI 10.1353/ajm.1999.0024
Bibliographic Information
- Delia Garijo
- Affiliation: Department of Applied Mathematics I, University of Seville, Seville, Spain
- Email: dgarijo@us.es
- Andrew Goodall
- Affiliation: Department of Applied Mathematics (KAM) and Institute of Theoretical Computer Science (ITI), Charles University, Prague, Czech Republic
- Email: goodall.aj@gmail.com
- Jaroslav Nešetřil
- Affiliation: Department of Applied Mathematics (KAM) and Institute of Theoretical Computer Science (ITI), Charles University, Prague, Czech Republic
- Email: nesetril@kam.mff.cuni.cz
- Received by editor(s): January 13, 2011
- Received by editor(s) in revised form: September 15, 2011
- Published electronically: December 4, 2012
- Additional Notes: The first author’s research supported by projects O.R.I MTM2008-05866-C03-01 and PAI FQM-0164
The second and third authors’ research supported by ITI 1M0545 and the Centre for Discrete Mathematics, Theoretical Computer Science and Applications (DIMATIA) - Communicated by: Jim Haglund
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 1849-1861
- MSC (2010): Primary 05C21, 05C25; Secondary 05C99
- DOI: https://doi.org/10.1090/S0002-9939-2012-11449-2
- MathSciNet review: 3034412