## Degree formula for the Euler characteristic

HTML articles powered by AMS MathViewer

- by Olivier Haution PDF
- Proc. Amer. Math. Soc.
**141**(2013), 1863-1869 Request permission

## Abstract:

We give a proof of the degree formula for the Euler characteristic previously obtained by Kirill Zainoulline. The arguments used here are considerably simpler and allow us to remove all restrictions on the characteristic of the base field.## References

- Shuang Cai,
*Algebraic connective $K$-theory and the niveau filtration*, J. Pure Appl. Algebra**212**(2008), no. 7, 1695–1715. MR**2400737**, DOI 10.1016/j.jpaa.2007.12.002 - William Fulton,
*Intersection theory*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR**1644323**, DOI 10.1007/978-1-4612-1700-8 - Olivier Haution,
*Reduced Steenrod operations and resolution of singularities*, J. K-Theory**9**(2012), no. 2, 269–290. MR**2922390**, DOI 10.1017/is011006030jkt162 - Olivier Haution,
*Integrality of the Chern character in small codimension*, Adv. Math.**231**(2012), no. 2, 855–878. MR**2955195**, DOI 10.1016/j.aim.2012.04.030 - M. Levine and F. Morel,
*Algebraic cobordism*, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR**2286826** - Alexander Merkurjev,
*Algebraic oriented cohomology theories*, Algebraic number theory and algebraic geometry, Contemp. Math., vol. 300, Amer. Math. Soc., Providence, RI, 2002, pp. 171–193. MR**1936372**, DOI 10.1090/conm/300/05148 - Daniel Quillen,
*Higher algebraic $K$-theory. I*, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR**0338129** - Markus Rost. On Frobenius, ${K}$-theory, and characteristic numbers.
*Preprint*, 2008. http://www.math.uni-bielefeld.de/~rost/frobenius.html. - K. Zainoulline,
*Degree formula for connective $K$-theory*, Invent. Math.**179**(2010), no. 3, 507–522. MR**2587339**, DOI 10.1007/s00222-009-0221-7

## Additional Information

**Olivier Haution**- Affiliation: School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
- Email: olivier.haution@gmail.com
- Received by editor(s): July 10, 2011
- Received by editor(s) in revised form: September 15, 2011
- Published electronically: December 4, 2012
- Communicated by: Lev Borisov
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 1863-1869 - MSC (2010): Primary 14C40, 14F43
- DOI: https://doi.org/10.1090/S0002-9939-2012-11450-9
- MathSciNet review: 3034413