BIALYNICKI-BIRULA DECOMPOSITION OF
DELIGNE-MUMFORD STACKS

JONATHAN SKOWERA
(Communicated by Lev Borisov)

Abstract. This short note considers the Bialynicki-Birula decomposition of Deligne-Mumford stacks under one-dimensional torus actions and extends a result of Oprea.

1. Introduction

In this short note, we consider actions of one-dimensional tori on tame Deligne-Mumford stacks which are smooth and proper over an algebraically closed field. We extend a result of Oprea [Opr06] to show that in the aforementioned case, if the stack has a scheme for a coarse moduli space, or if it is toric, then it admits a Bialynicki-Birula decomposition and often a corresponding decomposition of cohomology. A history of the result can be found in [Bro05, Theorem 3.2].

2. Notation and terminology

Let k be an algebraically closed field of arbitrary characteristic, fixed in what follows.

In this note, an algebraic stack will be a stack X fibered over (Sch/k) in the étale topology, such that the diagonal mapping $\Delta : X \to X \times X$ is representable, separated and quasi-compact, and such that there exists a smooth, surjective k-morphism $U \to X$ from a k-scheme U, which will be called an atlas. Deligne-Mumford stacks are those admitting étale atlases. Proper Deligne-Mumford stacks are those admitting a finite, surjective morphism from a proper k-scheme. Tame Deligne-Mumford stacks are those with linearly reductive geometric stabilizer groups.

An affine fibration is a flat morphism $p : E \to X$ which is étale locally a trivial bundle of affine spaces. This definition weakens the definition of a vector bundle by relaxing the requirement that the transition functions be linear.

Let T be a one-dimensional torus over k with an isomorphism to \mathbb{G}_m. Let the fixed points of an action of T on a stack X be denoted by X_T [Rom05].

If an algebraic stack has the form of a quotient $[X/G]$ of a normal toric variety X over an algebraically closed field of characteristic zero by a subgroup G of the torus of X, then it is called a toric stack [GS11a].

Received by the editors July 24, 2011 and, in revised form, September 26, 2011.
2010 Mathematics Subject Classification. Primary 14L30; Secondary 14A20.
The author’s research was supported by the Swiss National Science Foundation.

©2012 American Mathematical Society
Reverts to public domain 28 years from publication

1933
3. Bialynicki-Birula decomposition of Deligne-Mumford stacks

Oprea proved a form of the Bialynicki-Birula decomposition [BB73] for Deligne-Mumford stacks assuming there exists a T-equivariant, affine, étale atlas [Opr06, Proposition 5].

Proposition 3.1 (Oprea). Let X be a smooth, proper Deligne-Mumford stack over an algebraically closed field k with a T-action that admits a T-equivariant, affine, étale atlas $U \to X$. Let $F = \coprod F_i$ be the decomposition of the fixed substack into connected components. Then X decomposes into disjoint, locally closed, T-equivariant substacks X_i which are T-equivariant affine fibrations over F_i.

Oprea expected the existence of an atlas to be a general fact [Opr06, Section 2]. Here we show that the desired atlas exists under somewhat general conditions.

Proposition 3.2. Let X be a tame, irreducible Deligne-Mumford stack, smooth and proper over k, whose generic stabilizer is trivial and whose coarse moduli space is a scheme. Furthermore, let an action of T on X be given such that T acts trivially on its fixed locus. Then there exists a T-equivariant, affine, étale atlas $U \to X$.

Remark 3.3. If an algebraic group G acts algebraically on a Deligne-Mumford stack X, then the action descends to the coarse moduli space of X by the universal property of the coarse moduli space of $G \times_k X$.

Remark 3.4. If T does not act trivially on its fixed locus, it can be made to do so by a reparametrization of the action. Since T-invariance is not affected by this change, the decomposition for the new action will be a decomposition for the original action.

Proof. Since X is reduced and irreducible with a scheme for a coarse moduli space, the Keel-Mori theorem [KM97, Proposition 4.2] shows that the coarse moduli space is in fact a normal, proper variety over k. It inherits a T-action by Remark 3.3.

Since it is proper, any collection of open, T-invariant neighborhoods containing the fixed point locus covers it and contains a finite subcover. They can be chosen to be affine by Sumihiro’s theorem [Sum74, Corollary 2]. So it suffices to find the desired atlas for an arbitrary fixed k-point $x \in X$. To this end, let Y be the pullback of X to an open, affine, T-invariant neighborhood of the image of x in the coarse moduli space.

Consider the frame bundle of Y with total space FY. Each k-point $y \in Y$ lies in the image of an étale, representable morphism from a quotient stack of the form $[U/G]$ for an affine, irreducible scheme U with an action of the stabilizer group G of y and containing a point u fixed by the G-action and mapping to y [KM97]. By the tameness hypothesis, G is linearly reductive. Since Y has trivial generic stabilizer, G acts faithfully on U. Applying [BB73, Theorem 2.4] to U and T_uU shows that G acts faithfully on T_yY. So the total space FY is an algebraic space, and $Y = [FY/GL_n]$, where n is the dimension of X. But Y has an affine coarse moduli space, so FY is, in fact, an affine scheme (cf. [EHKV01, Remark 4.3]).

The action of T on Y induces an action on TY and hence an action on FY, which is an open, T-invariant substack of $TY^{\oplus n}$. Let $p : FY \to Y$ be the projection. An atlas will be defined by finding a T-equivariant étale slice $U \to FY$ over the fixed point y.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
One may assume that a fixed point \(f \in FY \) lies over \(y \) by modifying the action as follows. Choose a basis of the tangent space \(T_yY \) which diagonalizes the \(T \)-action, i.e., so that \(t : (v_1, \ldots, v_n) \mapsto (t^{a_1}v_1, \ldots, t^{a_n}v_n) \). Then the induced \(T^n \)-action on \(FY \) can be used to define a twisted \(T \)-action on \(FY \) by

\[
T \to T^n, \\
t \mapsto (t^{-a_1}, \ldots, t^{-a_n}).
\]

The projection from the frame bundle remains \(T \)-equivariant after twisting the action, but now the action fixes the frame \(f \) formed by the basis vectors.

The proof finishes by arguing as in [Ols06] Lemma 3. The torus \(T \) acts on the tangent space \(T_fFY \) at \(f \), with \(T_fFY \to T_yY \) surjective and \(T \)-equivariant. By the linear reductivity of \(T \), \(T_yY \) may be identified with some \(T \)-invariant subspace \(N \subset T_fFY \), compatibly with the \(T \)-actions. By a theorem of Białynicki-Birula [BB73, Theorem 2.1], there exists a reduced and irreducible, closed, \(T \)-invariant subscheme \(Z \) of \(FY \) containing \(f \) as a nonsingular point such that \(T_fZ = N \).

Taking \(U \) to be the largest open subscheme of \(Z \) on which the restriction of \(p \) is étale ensures that \(U \) is \(T \)-invariant. By applying Sumihiro’s theorem again, one may shrink \(U \) to an affine, \(T \)-invariant neighborhood of \(f \) whose image in \(Y \) contains \(y \).

\[\tag{3.1}\]

Theorem 3.5. Let \(X \) be a tame Deligne-Mumford stack, smooth and proper over \(k \), whose coarse moduli space is a scheme, and let an action of \(T \) on \(X \) be given. Then \(X \) admits a Białynicki-Birula decomposition.

Proof. One first reduces to the case that \(X \) is irreducible by decomposing each irreducible component separately and combining to give a decomposition of all of \(X \). Applying Remark 3.1, one may suppose \(T \) acts trivially on its fixed locus. By [Ols07] Proposition 2.1, there exists a rigidification \(\overline{X} \) of \(X \) which has trivial generic stabilizer. In particular, there is an étale, proper morphism \(X \to \overline{X} \) which forms a \(G \)-gerbe for a finite group \(G \). The \(T \)-action descends to \(\overline{X} \) using the universal property of rigidification, so Proposition 3.2 guarantees the existence of a \(T \)-equivariant, affine, étale atlas of \(\overline{X} \). Let the substacks \(F_i \) and \(X_i \), together with \(T \)-equivariant affine fibrations \(\overline{X}_i \to F_i \), be defined according to Proposition 3.1.

Let the decomposition of \(X \) be defined by pulling back along \(X \to \overline{X} \). Pulling back again by the affine fibration \(\overline{X}_i \to F_i \) forms the diagram:

\[
\begin{align*}
\overline{X}_i \times_{\overline{F}_i} F_i & \longrightarrow F_i \longrightarrow X_i \longrightarrow X \\
\overline{X}_i & \longrightarrow \overline{F}_i \longrightarrow \overline{X}_i \longrightarrow \overline{X}.
\end{align*}
\]

So \(F = \bigsqcup_i F_i \) is a decomposition of the fixed substack into connected components [Rom05]. Furthermore, all morphisms are \(T \)-equivariant.

In what follows, let \(i \) be fixed. It remains to prove the existence of an affine fibration, and diagram (3.1) shows it will suffice to supply a \(T \)-equivariant isomorphism \(\overline{X}_i \times_{\overline{F}_i} F_i \to X_i \) over \(\overline{X}_i \). This can be done by specifying such an isomorphism, unique up to a canonical 2-isomorphism, over an étale, \(T \)-equivariant atlas of \(\overline{X}_i \), and then applying the descent property of the stack \(\text{Hom}_{\overline{X}_i}(\overline{X}_i \times_{\overline{F}_i} F_i, X_i) \) [Ols06].
First, étale, T-equivariant atlases forming the following pullback will be defined:

$$
\begin{array}{ccc}
W & \rightarrow & P \\
\downarrow & & \downarrow \\
\bar{X}_i & \rightarrow & \bar{F}_i.
\end{array}
$$

There is an $\text{Out}(G)$-torsor on \bar{F}_i associated to the rigidification gerbe $F_i \rightarrow \bar{F}_i$ whose class α lies in $H^1(\bar{F}_i, \text{Out}(G))$. Base change to the total space of the torsor trivializes α and gives an element of the étale cohomology $\beta \in H^2(\bar{F}_i, Z)$ which classifies the gerbe, where Z is the center of G (cf. [EHKV01, Section 3.1]). Let $P \rightarrow \bar{F}_i$ be an affine, étale atlas that trivializes α, β, and the affine fibration $\bar{X}_i \rightarrow \bar{F}_i$. Also, let $W := P \times_{\bar{F}_i} \bar{X}_i$, as in diagram (3.2).

By the Künneth formula for the algebraic fundamental group [Ray71, Proposition 4.6], the atlas W trivializes the $\text{Out}(G)$-torsor associated to the gerbe $X_i \rightarrow \bar{X}_i$. Then [Art73, Corollary 2.2] shows that the morphism $P \times A^n \cong W \rightarrow P$ induces an isomorphism $H^2(P, Z) \cong H^2(W, Z)$, implying that the classifying element of $X_i \times \bar{X}_i \rightarrow W \rightarrow W$ vanishes. The isomorphism $X_i \times \bar{X}_i \rightarrow F_i \times \bar{F}_i$ where W of trivial gerbes can be chosen, uniquely up to a canonical 2-isomorphism, to be the isomorphism over W which extends the identity morphism of $F_i \times \bar{F}_i$ over P. This follows from the triviality of the affine fibration $W \rightarrow P$ and the Künneth formula. The isomorphism will also be T-equivariant by similar reasoning, since the identity is T-equivariant.

\begin{flushright}
\text{□}
\end{flushright}

Remark 3.6. If X is a tame Deligne-Mumford stack, smooth and proper over k, with a projective coarse moduli space and a T-action, then the induced decomposition forms a filtration, and a lemma of Oprea [Opr06, Lemma 6] implies that the Betti numbers of the stack are calculated by the Betti numbers of the fixed points.

In what follows, T may be a torus of arbitrary dimension.

Proposition 3.7. Let $\text{char} \ k = 0$, and let X be a normal algebraic space, separated and of finite type over k, with an action of T which gives a dense, open embedding of T in X. Then X is a scheme and hence a toric variety.

Proof. First, let $k = C$. The scheme locus of the normalized blowup at the closure of any nondense T-orbit forms a toric variety whose image includes the orbit. The associated fans give, in each T-orbit, a limit point of a G_m-orbit of $1 \in T \hookrightarrow X$ for a subtorus G_m of T. Then X is a finite union of T-orbits of such points and hence a scheme [Hau00, Theorem 1].

For general k, one may immediately reduce to the case that k is a subfield of C. The pullback of X to C is a toric variety [Hau00], so a theorem [GS11b, Theorem 6.1] implies there exists an étale, representable, surjective morphism $p : [U/GL_n] \rightarrow [X_C/T]$ where U is a quasi-affine scheme over C. Let $L \subset C$ be a subfield of definition of p which is finitely generated over k, giving a morphism $p_L : [U_L/GL_n] \rightarrow [X_L/T]$ where U is obtained by pulling back U_L to C. Then $d = \text{tr} \deg L/K < \infty$, and p_L remains étale, representable and surjective. Writing $L = k(V)$ for a d-dimensional affine variety V, one may suppose that U_L with its GL_n-action is defined over V, realizing p_L as the pullback of a dominant, étale morphism $p_V : [U_V/GL_n] \rightarrow [X/T] \times V$ to the generic point of V. After excluding points of U lying in the image of the pullback of the relative inertia, p_V becomes
The disjoint union of fibers of p_V over finitely many closed points of V forms an étale, representable, surjective morphism to $[X/T]$. Applying in the reverse direction, one deduces that X is a toric algebraic space and hence a scheme.

\section*{Acknowledgment}

The author would like to thank A. Kresch for his careful guidance and generous suggestions.

\begin{thebibliography}{99}

\bibitem[BB73]{BB73} A. Białynicki-Birula, \textit{Some theorems on actions of algebraic groups}, Ann. of Math. (2) \textbf{98} (1973), 480–497. MR0366940 (51:3186)

\end{thebibliography}