## Traces of Hecke operators in level 1 and Gaussian hypergeometric functions

HTML articles powered by AMS MathViewer

- by Jenny G. Fuselier
- Proc. Amer. Math. Soc.
**141**(2013), 1871-1881 - DOI: https://doi.org/10.1090/S0002-9939-2012-11540-0
- Published electronically: December 10, 2012
- PDF | Request permission

## Abstract:

We provide formulas for traces of $p^{th}$ Hecke operators in level 1 in terms of values of finite field $_2F_1$-hypergeometric functions, extending previous work of the author to all odd primes $p$ instead of only those $p \equiv 1 \pmod {12}$. We first give a general level 1 trace formula in terms of the trace of Frobenius on a family of elliptic curves, and then we draw on recent work of Lennon to produce level 1 trace formulas in terms of hypergeometric functions for all primes $p > 3$.## References

- Scott Ahlgren,
*The points of a certain fivefold over finite fields and the twelfth power of the eta function*, Finite Fields Appl.**8**(2002), no. 1, 18–33. MR**1872789**, DOI 10.1006/ffta.2001.0315 - Scott Ahlgren and Ken Ono,
*Modularity of a certain Calabi-Yau threefold*, Monatsh. Math.**129**(2000), no. 3, 177–190. MR**1746757**, DOI 10.1007/s006050050069 - Scott Ahlgren and Ken Ono,
*A Gaussian hypergeometric series evaluation and Apéry number congruences*, J. Reine Angew. Math.**518**(2000), 187–212. MR**1739404**, DOI 10.1515/crll.2000.004 - B. J. Birch,
*How the number of points of an elliptic curve over a fixed prime field varies*, J. London Math. Soc.**43**(1968), 57–60. MR**230682**, DOI 10.1112/jlms/s1-43.1.57 - Sharon Frechette, Ken Ono, and Matthew Papanikolas,
*Gaussian hypergeometric functions and traces of Hecke operators*, Int. Math. Res. Not.**60**(2004), 3233–3262. MR**2096220**, DOI 10.1155/S1073792804132522 - Jenny G. Fuselier,
*Hypergeometric functions over finite fields and relations to modular forms and elliptic curves*, ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)–Texas A&M University. MR**2710790** - Jenny G. Fuselier,
*Hypergeometric functions over $\Bbb F_p$ and relations to elliptic curves and modular forms*, Proc. Amer. Math. Soc.**138**(2010), no. 1, 109–123. MR**2550175**, DOI 10.1090/S0002-9939-09-10068-0 - John Greene,
*Hypergeometric functions over finite fields*, Trans. Amer. Math. Soc.**301**(1987), no. 1, 77–101. MR**879564**, DOI 10.1090/S0002-9947-1987-0879564-8 - Hiroaki Hijikata, Arnold K. Pizer, and Thomas R. Shemanske,
*The basis problem for modular forms on $\Gamma _0(N)$*, Mem. Amer. Math. Soc.**82**(1989), no. 418, vi+159. MR**960090**, DOI 10.1090/memo/0418 - Yasutaka Ihara,
*Hecke Polynomials as congruence $\zeta$ functions in elliptic modular case*, Ann. of Math. (2)**85**(1967), 267–295. MR**207655**, DOI 10.2307/1970442 - Catherine Lennon,
*Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves*, Proc. Amer. Math. Soc.**139**(2011), no. 6, 1931–1938. MR**2775369**, DOI 10.1090/S0002-9939-2010-10609-3 - Lennon, C.,
*A Trace Formula for Certain Hecke Operators and Gaussian Hypergeometric Functions*, http://arxiv.org/abs/1003.11578. - John Riordan,
*Combinatorial identities*, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0231725** - René Schoof,
*Nonsingular plane cubic curves over finite fields*, J. Combin. Theory Ser. A**46**(1987), no. 2, 183–211. MR**914657**, DOI 10.1016/0097-3165(87)90003-3

## Bibliographic Information

**Jenny G. Fuselier**- Affiliation: Department of Mathematics and Computer Science, High Point University, High Point, North Carolina 27262
- MR Author ID: 882190
- Email: jfuselie@highpoint.edu
- Received by editor(s): September 15, 2011
- Published electronically: December 10, 2012
- Communicated by: Ken Ono
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 1871-1881 - MSC (2010): Primary 11F30; Secondary 11T24, 11G20, 33C99
- DOI: https://doi.org/10.1090/S0002-9939-2012-11540-0
- MathSciNet review: 3034414