Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics
HTML articles powered by AMS MathViewer
- by Raphaël Danchin
- Proc. Amer. Math. Soc. 141 (2013), 1979-1993
- DOI: https://doi.org/10.1090/S0002-9939-2012-11591-6
- Published electronically: December 11, 2012
- PDF | Request permission
Abstract:
We give lower bounds for the lifespan of a solution to the inviscid Boussinesq system. In dimension two, we point out that it tends to infinity when the initial (relative) temperature tends to zero. This is, to the best of our knowledge, the first result of this kind for the inviscid Boussinesq system. In passing, we provide continuation criteria (of independent interest) in the $N$-dimensional case. In the second part of the paper, our method is adapted to handle the axisymmetric incompressible Euler equations with swirl.References
- Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011. MR 2768550, DOI 10.1007/978-3-642-16830-7
- C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Lecture Notes in Math., Vol. 565, Springer, Berlin, 1976, pp. 1–13. MR 0467034
- J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations, Comm. Math. Phys. 94 (1984), no. 1, 61–66. MR 763762, DOI 10.1007/BF01212349
- Andrew J. Majda and Andrea L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. MR 1867882
- Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209–246 (French). MR 631751, DOI 10.24033/asens.1404
- Jean-Yves Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995), 177 (French, with French summary). MR 1340046
- Dongho Chae, Sung-Ki Kim, and Hee-Seok Nam, Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations, Nagoya Math. J. 155 (1999), 55–80. MR 1711383, DOI 10.1017/S0027763000006991
- R. Danshen, Axisymmetric incompressible flows with bounded vorticity, Uspekhi Mat. Nauk 62 (2007), no. 3(375), 73–94 (Russian, with Russian summary); English transl., Russian Math. Surveys 62 (2007), no. 3, 475–496. MR 2355419, DOI 10.1070/RM2007v062n03ABEH004412
- Raphaël Danchin and Francesco Fanelli, The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces, J. Math. Pures Appl. (9) 96 (2011), no. 3, 253–278 (English, with English and French summaries). MR 2831582, DOI 10.1016/j.matpur.2011.04.005
- Alexandre Dutrifoy, Precise regularity results for the Euler equations, J. Math. Anal. Appl. 282 (2003), no. 1, 177–200. MR 2000337, DOI 10.1016/S0022-247X(03)00135-5
- Weinan E and Chi-Wang Shu, Small-scale structures in Boussinesq convection, Phys. Fluids 6 (1994), no. 1, 49–58. MR 1252833, DOI 10.1063/1.868044
- Taoufik Hmidi and Sahbi Keraani, Existence globale pour le système d’Euler incompressible 2-D dans $B^1_{\infty ,1}$, C. R. Math. Acad. Sci. Paris 341 (2005), no. 11, 655–658 (French, with English and French summaries). MR 2182075, DOI 10.1016/j.crma.2005.09.045
- Taoufik Hmidi and Sahbi Keraani, Incompressible viscous flows in borderline Besov spaces, Arch. Ration. Mech. Anal. 189 (2008), no. 2, 283–300. MR 2413097, DOI 10.1007/s00205-008-0115-7
- Mohamed Jellouli, Équation d’Euler sur un domaine extérieur. Existence locale et apparition de singularités, Osaka J. Math. 38 (2001), no. 3, 619–647 (French). MR 1860843
- Keisuke Kikuchi, The existence and uniqueness of nonstationary ideal incompressible flow in exterior domains in $\textbf {R}^3$, J. Math. Soc. Japan 38 (1986), no. 4, 575–598. MR 856127, DOI 10.2969/jmsj/03840575
- Xiaofeng Liu, Meng Wang, and Zhifei Zhang, Local well-posedness and blowup criterion of the Boussinesq equations in critical Besov spaces, J. Math. Fluid Mech. 12 (2010), no. 2, 280–292. MR 2645152, DOI 10.1007/s00021-008-0286-x
- Hee Chul Pak and Young Ja Park, Existence of solution for the Euler equations in a critical Besov space $\mathbf B^1_{\infty ,1}(\Bbb R^n)$, Comm. Partial Differential Equations 29 (2004), no. 7-8, 1149–1166. MR 2097579, DOI 10.1081/PDE-200033764
- Hans Triebel, On Besov-Hardy-Sobolev spaces in domains and regular elliptic boundary value problems. The case $0<p\leq \infty$, Comm. Partial Differential Equations 3 (1978), no. 12, 1083–1164. MR 512083, DOI 10.1080/03605307808820088
- Misha Vishik, Hydrodynamics in Besov spaces, Arch. Ration. Mech. Anal. 145 (1998), no. 3, 197–214. MR 1664597, DOI 10.1007/s002050050128
- W. Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z. 37 (1933), no. 1, 698–726 (French). MR 1545430, DOI 10.1007/BF01474610
- V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963), 1032–1066 (Russian). MR 158189
- Yong Zhou, Local well-posedness for the incompressible Euler equations in the critical Besov spaces, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 773–786 (English, with English and French summaries). MR 2097422, DOI 10.5802/aif.2033
Bibliographic Information
- Raphaël Danchin
- Affiliation: Université Paris-Est, LAMA, UMR 8050, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
- Email: danchin@univ-paris12.fr
- Received by editor(s): September 15, 2011
- Published electronically: December 11, 2012
- Communicated by: Walter Craig
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 1979-1993
- MSC (2010): Primary 35Q35, 76B03, 76B70, 35A01
- DOI: https://doi.org/10.1090/S0002-9939-2012-11591-6
- MathSciNet review: 3034425