Embeddings of Müntz spaces: The Hilbertian case
HTML articles powered by AMS MathViewer
- by S. Waleed Noor and Dan Timotin
- Proc. Amer. Math. Soc. 141 (2013), 2009-2023
- DOI: https://doi.org/10.1090/S0002-9939-2012-11681-8
- Published electronically: December 18, 2012
- PDF | Request permission
Abstract:
Given a strictly increasing sequence $\Lambda =(\lambda _n)$ of nonnegative real numbers, with $\sum _{n=1}^\infty \frac {1}{\lambda _n}<\infty$, the Müntz spaces $M_\Lambda ^p$ are defined as the closure in $L^p([0,1])$ of the monomials $x^{\lambda _n}$. We discuss properties of the embedding $M_\Lambda ^p\subset L^p(\mu )$, where $\mu$ is a finite positive Borel measure on the interval $[0,1]$. Most of the results are obtained for the Hilbertian case $p=2$, in which we give conditions for the embedding to be bounded, compact, or to belong to the Schatten–von Neumann ideals.References
- I. Al Alam. Géometrie des espaces de Müntz et opérateurs de composition $\grave {a}$ poids. PhD thesis, Université Lille 1, 2008.
- Ihab Al Alam, Essential norms of weighted composition operators on Müntz spaces, J. Math. Anal. Appl. 358 (2009), no. 2, 273–280. MR 2532505, DOI 10.1016/j.jmaa.2009.04.042
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR 1367960, DOI 10.1007/978-1-4612-0793-1
- Th. J. Bromwich. An Introduction to the Theory of Infinite Series. Macmillan, London, 1908.
- Isabelle Chalendar, Emmanuel Fricain, and Dan Timotin, Embedding theorems for Müntz spaces, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 6, 2291–2311 (2012) (English, with English and French summaries). MR 2976312, DOI 10.5802/aif.2674
- Ole Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. MR 1946982, DOI 10.1007/978-0-8176-8224-8
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- Vladimir I. Gurariy and Wolfgang Lusky, Geometry of Müntz spaces and related questions, Lecture Notes in Mathematics, vol. 1870, Springer-Verlag, Berlin, 2005. MR 2190706, DOI 10.1007/11551621
- Charles A. McCarthy, $c_{p}$, Israel J. Math. 5 (1967), 249–271. MR 225140, DOI 10.1007/BF02771613
- Angela Spalsbury, Perturbations in Müntz’s theorem, J. Approx. Theory 150 (2008), no. 1, 48–68. MR 2381528, DOI 10.1016/j.jat.2007.05.002
Bibliographic Information
- S. Waleed Noor
- Affiliation: Abdus Salam School of Mathematical Sciences, New Muslim Town, Lahore, 54600, Pakistan
- Email: waleed_math@hotmail.com
- Dan Timotin
- Affiliation: Institute of Mathematics of the Romanian Academy, Calea Griviţei 21, Bucharest, Romania
- Email: Dan.Timotin@imar.ro
- Received by editor(s): September 18, 2011
- Published electronically: December 18, 2012
- Communicated by: Richard Rochberg
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 2009-2023
- MSC (2010): Primary 46E15, 46E20, 46E35
- DOI: https://doi.org/10.1090/S0002-9939-2012-11681-8
- MathSciNet review: 3034427