Log-concavity of asymptotic multigraded Hilbert series
HTML articles powered by AMS MathViewer
- by Adam McCabe and Gregory G. Smith
- Proc. Amer. Math. Soc. 141 (2013), 1883-1892
- DOI: https://doi.org/10.1090/S0002-9939-2012-11808-8
- Published electronically: December 20, 2012
- PDF | Request permission
Abstract:
We study the linear map sending the numerator of the rational function representing the Hilbert series of a module to that of its $r$-th Veronese submodule. We show that the asymptotic behaviour as $r$ tends to infinity depends on the multidegree of the module and the underlying positively multigraded polynomial ring. More importantly, we give a polyhedral description for the asymptotic polynomial and prove that the coefficients are log-concave.References
- Matthias Beck and Alan Stapledon, On the log-concavity of Hilbert series of Veronese subrings and Ehrhart series, Math. Z. 264 (2010), no. 1, 195–207. MR 2564938, DOI 10.1007/s00209-008-0458-7
- Petter Brändén, Polynomials with the half-plane property and matroid theory, Adv. Math. 216 (2007), no. 1, 302–320. MR 2353258, DOI 10.1016/j.aim.2007.05.011
- Petter Brändén, James Haglund, Mirkó Visontai, and David G. Wagner, Proof of the monotone column permanent conjecture, Notions of positivity and the geometry of polynomials, Trends in Mathematics, Birkhäuser, Basel, 2011, pp. 63–78.
- Francesco Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics ’93, Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 71–89. MR 1310575, DOI 10.1090/conm/178/01893
- Francesco Brenti and Volkmar Welker, The Veronese construction for formal power series and graded algebras, Adv. in Appl. Math. 42 (2009), no. 4, 545–556. MR 2511015, DOI 10.1016/j.aam.2009.01.001
- Winfried Bruns and Joseph Gubeladze, Polytopes, rings, and $K$-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009. MR 2508056, DOI 10.1007/b105283
- Persi Diaconis and Jason Fulman, Carries, shuffling, and an amazing matrix, Amer. Math. Monthly 116 (2009), no. 9, 788–803. MR 2572087, DOI 10.4169/000298909X474864
- Persi Diaconis and Jason Fulman, Carries, shuffling, and symmetric functions, Adv. in Appl. Math. 43 (2009), no. 2, 176–196. MR 2531920, DOI 10.1016/j.aam.2009.02.002
- Lawrence Ein and Robert Lazarsfeld, Asymptotic syzygies of algebraic varieties, Invent. Math., published online 02 March 2012. DOI:10.1007/S00222-012-0384-5.
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- John M. Holte, Carries, combinatorics, and an amazing matrix, Amer. Math. Monthly 104 (1997), no. 2, 138–149. MR 1437415, DOI 10.2307/2974981
- Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at www.math.uiuc.edu/Macaulay2/.
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
- Alexander Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN 6 (2009), 1026–1106. MR 2487491, DOI 10.1093/imrn/rnn153
- Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. MR 874114
- Richard P. Stanley, Eulerian partitions of a unit cube, Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), Reidel, Dordrecht, 1977, p. 49.
- Richard P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986) Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500–535. MR 1110850, DOI 10.1111/j.1749-6632.1989.tb16434.x
- Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR 1442260, DOI 10.1017/CBO9780511805967
- Bernd Sturmfels, On vector partition functions, J. Combin. Theory Ser. A 72 (1995), no. 2, 302–309. MR 1357776, DOI 10.1016/0097-3165(95)90067-5
- Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR 1964483, DOI 10.1090/gsm/058
- Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028, DOI 10.1007/978-1-4613-8431-1
Bibliographic Information
- Adam McCabe
- Affiliation: 35 Summerhill Road, Holland Landing, Ontario, L9N 1C6, Canada
- Email: adam.r.mccabe@gmail.com
- Gregory G. Smith
- Affiliation: Department of Mathematics & Statistics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
- MR Author ID: 622959
- Email: ggsmith@mast.queensu.ca
- Received by editor(s): September 20, 2011
- Published electronically: December 20, 2012
- Communicated by: Irena Peeva
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 1883-1892
- MSC (2010): Primary 05E40, 13D40, 52B20
- DOI: https://doi.org/10.1090/S0002-9939-2012-11808-8
- MathSciNet review: 3034415