On the distinction between the classes of Dixmier and Connes-Dixmier traces
HTML articles powered by AMS MathViewer
- by Fedor Sukochev, Alexandr Usachev and Dmitriy Zanin
- Proc. Amer. Math. Soc. 141 (2013), 2169-2179
- DOI: https://doi.org/10.1090/S0002-9939-2012-11853-2
- Published electronically: December 28, 2012
- PDF | Request permission
Abstract:
We prove that the classes of Dixmier and Connes-Dixmier traces differ even on the Dixmier ideal $\mathcal M_{1,\infty }$. We construct a Marcinkiewicz space $\mathcal M_\psi$ and a positive operator $T\in \mathcal M_\psi$ which is Connes-Dixmier measurable but which is not Dixmier measurable.References
- Alan Carey, John Phillips, and Fyodor Sukochev, Spectral flow and Dixmier traces, Adv. Math. 173 (2003), no. 1, 68–113. MR 1954456, DOI 10.1016/S0001-8708(02)00015-4
- A. L. Keri and F. A. Sukochev, Dixmier traces and some applications to noncommutative geometry, Uspekhi Mat. Nauk 61 (2006), no. 6(372), 45–110 (Russian, with Russian summary); English transl., Russian Math. Surveys 61 (2006), no. 6, 1039–1099. MR 2330013, DOI 10.1070/RM2006v061n06ABEH004369
- Alan L. Carey, Adam Rennie, Aleksandr Sedaev, and Fyodor Sukochev, The Dixmier trace and asymptotics of zeta functions, J. Funct. Anal. 249 (2007), no. 2, 253–283. MR 2345333, DOI 10.1016/j.jfa.2007.04.011
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Jacques Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1107–A1108 (French). MR 196508
- P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semenov, and F. A. Sukochev, Singular symmetric functionals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 290 (2002), no. Issled. po Lineĭn. Oper. i Teor. Funkts. 30, 42–71, 178 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 124 (2004), no. 2, 4867–4885. MR 1942537, DOI 10.1023/B:JOTH.0000042448.87252.0f
- P. G. Dodds, B. de Pagter, E. M. Semenov, and F. A. Sukochev, Symmetric functionals and singular traces, Positivity 2 (1998), no. 1, 47–75. MR 1655756, DOI 10.1023/A:1009720826217
- N. J. Kalton, A. A. Sedaev, and F. A. Sukochev, Fully symmetric functionals on a Marcinkiewicz space are Dixmier traces, Adv. Math. 226 (2011), no. 4, 3540–3549. MR 2764897, DOI 10.1016/j.aim.2010.09.025
- Steven Lord, Aleksandr Sedaev, and Fyodor Sukochev, Dixmier traces as singular symmetric functionals and applications to measurable operators, J. Funct. Anal. 224 (2005), no. 1, 72–106. MR 2139105, DOI 10.1016/j.jfa.2005.01.002
- Steven Lord and Fedor Sukochev, Measure theory in noncommutative spaces, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), Paper 072, 36. MR 2725011, DOI 10.3842/SIGMA.2010.072
- A. Pietsch, Dixmier Traces of Operators on Banach and Hilbert Spaces, to appear in Math. Nachr.
- A. Pietsch, Shift-invariant functionals on Banach sequence spaces, preprint.
- A. Pietsch, Connes-Dixmier Traces Versus Dixmier Traces, preprint.
- A. Sedaev, Geometrical and topological aspects of interpolation spaces of Petre’s K-method, Thesis, 2010 (in Russian).
- F. Sukochev, A. Usachev and D. Zanin, Generalized limits with additional invariance properties and their applications to noncommutative geometry, submitted manuscript.
- F. Sukochev and D. Zanin, Traces on symmetrically normed operator ideals, to appear in J. Reine Angew. Math.
Bibliographic Information
- Fedor Sukochev
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
- MR Author ID: 229620
- Email: f.sukochev@unsw.edu.au
- Alexandr Usachev
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
- Email: a.usachev@unsw.edu.au
- Dmitriy Zanin
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
- MR Author ID: 752894
- Email: d.zanin@unsw.edu.au
- Received by editor(s): September 22, 2011
- Published electronically: December 28, 2012
- Additional Notes: The authors’ research was supported by the Australian Research Council
- Communicated by: Varghese Mathai
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 2169-2179
- MSC (2010): Primary 58B34, 46L52
- DOI: https://doi.org/10.1090/S0002-9939-2012-11853-2
- MathSciNet review: 3034443