## Binomial arithmetical rank of edge ideals of forests

HTML articles powered by AMS MathViewer

- by Kyouko Kimura and Naoki Terai PDF
- Proc. Amer. Math. Soc.
**141**(2013), 1925-1932 Request permission

## Abstract:

We prove that the binomial arithmetical rank of the edge ideal of a forest coincides with its big height.## References

- Margherita Barile,
*On the arithmetical rank of the edge ideals of forests*, Comm. Algebra**36**(2008), no. 12, 4678–4703. MR**2473354**, DOI 10.1080/00927870802161220 - Margherita Barile, Dariush Kiani, Fatemeh Mohammadi, and Siamak Yassemi,
*Arithmetical rank of the cyclic and bicyclic graphs*, J. Algebra Appl.**11**(2012), no. 2, 1250039, 14. MR**2925452**, DOI 10.1142/S0219498811005634 - Margherita Barile and Naoki Terai,
*Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone*, Comm. Algebra**38**(2010), no. 10, 3686–3698. MR**2760684**, DOI 10.1080/00927870903236186 - Margherita Barile and Naoki Terai,
*The Stanley-Reisner ideals of polygons as set-theoretic complete intersections*, Comm. Algebra**39**(2011), no. 2, 621–633. MR**2773327**, DOI 10.1080/00927871003597634 - Viviana Ene, Oana Olteanu, and Naoki Terai,
*Arithmetical rank of lexsegment edge ideals*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)**53(101)**(2010), no. 4, 315–327. MR**2777678** - Jing He and Adam Van Tuyl,
*Algebraic properties of the path ideal of a tree*, Comm. Algebra**38**(2010), no. 5, 1725–1742. MR**2642022**, DOI 10.1080/00927870902998166 - Kyouko Kimura,
*Arithmetical rank of Cohen-Macaulay squarefree monomial ideals of height two*, J. Commut. Algebra**3**(2011), no. 1, 31–46. MR**2782698**, DOI 10.1216/JCA-2011-3-1-31 - K. Kimura, G. Rinaldo and N. Terai,
*Arithmetical rank of squarefree monomial ideals generated by five elements or with arithmetic degree four*, to appear in Comm. Algebra. - Kyouko Kimura, Naoki Terai, and Ken-ichi Yoshida,
*Arithmetical rank of squarefree monomial ideals of small arithmetic degree*, J. Algebraic Combin.**29**(2009), no. 3, 389–404. MR**2496313**, DOI 10.1007/s10801-008-0142-3 - Kyouko Kimura, Naoki Terai, and Ken-ichi Yoshida,
*Arithmetical rank of monomial ideals of deviation two*, Combinatorial aspects of commutative algebra, Contemp. Math., vol. 502, Amer. Math. Soc., Providence, RI, 2009, pp. 73–112. MR**2583275**, DOI 10.1090/conm/502/09858 - Manoj Kummini,
*Regularity, depth and arithmetic rank of bipartite edge ideals*, J. Algebraic Combin.**30**(2009), no. 4, 429–445. MR**2563135**, DOI 10.1007/s10801-009-0171-6 - Gennady Lyubeznik,
*On the local cohomology modules $H^i_{{\mathfrak {a}}}(R)$ for ideals ${\mathfrak {a}}$ generated by monomials in an $R$-sequence*, Complete intersections (Acireale, 1983) Lecture Notes in Math., vol. 1092, Springer, Berlin, 1984, pp. 214–220. MR**775884**, DOI 10.1007/BFb0099364 - Marcel Morales,
*Simplicial ideals, 2-linear ideals and arithmetical rank*, J. Algebra**324**(2010), no. 12, 3431–3456. MR**2735392**, DOI 10.1016/j.jalgebra.2010.08.025 - P. Mongelli,
*The arithmetical rank of a special class of monomial ideals*, preprint, arXiv:1005.2586. - Thomas Schmitt and Wolfgang Vogel,
*Note on set-theoretic intersections of subvarieties of projective space*, Math. Ann.**245**(1979), no. 3, 247–253. MR**553343**, DOI 10.1007/BF01673509 - Matteo Varbaro,
*Symbolic powers and matroids*, Proc. Amer. Math. Soc.**139**(2011), no. 7, 2357–2366. MR**2784800**, DOI 10.1090/S0002-9939-2010-10685-8

## Additional Information

**Kyouko Kimura**- Affiliation: Department of Mathematics, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Email: skkimur@ipc.shizuoka.ac.jp
**Naoki Terai**- Affiliation: Department of Mathematics, Faculty of Culture and Education, Saga University, Saga 840-8502, Japan
- Email: terai@cc.saga-u.ac.jp
- Received by editor(s): June 27, 2011
- Received by editor(s) in revised form: September 26, 2011
- Published electronically: January 2, 2013
- Communicated by: Irena Peeva
- © Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 1925-1932 - MSC (2010): Primary 13F55, 05C05
- DOI: https://doi.org/10.1090/S0002-9939-2013-11473-5
- MathSciNet review: 3034419