On approximately convex Takagi type functions
HTML articles powered by AMS MathViewer
- by Judit Makó and Zsolt Páles
- Proc. Amer. Math. Soc. 141 (2013), 2069-2080
- DOI: https://doi.org/10.1090/S0002-9939-2013-11486-3
- Published electronically: January 23, 2013
- PDF | Request permission
Abstract:
Given a nonnegative function $\phi :[0,\frac 12]\to \mathbb {R}_+$, we define the Takagi type function $S_\phi :\mathbb {R}\to \mathbb {R}$ by \begin{equation*} S_\phi (x):=\sum _{n=0}^{\infty }2\phi \big (\tfrac {1}{2^{n+1}}\big )d_Z(2^nx), \end{equation*} where $d_{\mathbb {Z}}(x):=\operatorname {dist}(x,\mathbb Z) :=\inf \{|x-k|: k\in \mathbb Z\}.$ The main result of the paper states that if $\phi (0)=0$ and the mapping $x\mapsto \phi (x)/x$ is concave, then the Takagi type function $S_\phi$ is approximately Jensen convex in the following sense: \begin{equation*} S_\phi \Big (\frac {x+y}{2}\Big ) \leq \frac {S_\phi (x)+S_\phi (y)}{2}+\phi \circ d_\mathbb Z\Big (\frac {x-y}{2}\Big ) \qquad (x,y\in \mathbb {R}). \end{equation*} Applications to the theory of approximately convex functions are also given.References
- F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), no. 4, 514–526 (German). MR 1511840, DOI 10.1007/BF01458222
- Patrick Billingsley, Notes: Van Der Waerden’s Continuous Nowhere Differentiable Function, Amer. Math. Monthly 89 (1982), no. 9, 691. MR 1540053, DOI 10.2307/2975655
- Zoltán Boros, An inequality for the Takagi function, Math. Inequal. Appl. 11 (2008), no. 4, 757–765. MR 2458169, DOI 10.7153/mia-11-65
- Piermarco Cannarsa and Carlo Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, vol. 58, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2041617, DOI 10.1007/b138356
- F. S. Cater, On van der Waerden’s nowhere differentiable function, Amer. Math. Monthly 91 (1984), no. 5, 307–308. MR 740246, DOI 10.2307/2322678
- D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821–828. MR 49962, DOI 10.1090/S0002-9939-1952-0049962-5
- Attila Házy, On the stability of $t$-convex functions, Aequationes Math. 74 (2007), no. 3, 210–218. MR 2376448, DOI 10.1007/s00010-007-2880-z
- Attila Házy and Zsolt Páles, On approximately midconvex functions, Bull. London Math. Soc. 36 (2004), no. 3, 339–350. MR 2038721, DOI 10.1112/S0024609303002807
- Attila Házy and Zsolt Páles, On approximately $t$-convex functions, Publ. Math. Debrecen 66 (2005), no. 3-4, 489–501. MR 2137784, DOI 10.5486/pmd.2005.3123
- Attila Házy and Zsolt Páles, On a certain stability of the Hermite-Hadamard inequality, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009), no. 2102, 571–583. MR 2471774, DOI 10.1098/rspa.2008.0291
- Hans-Heinrich Kairies, Takagi’s function and its functional equations, Rocznik Nauk.-Dydakt. Prace Mat. 15 (1998), 73–83. MR 1826076
- Konrad Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen, Math. Z. 2 (1918), no. 1-2, 1–26 (German). MR 1544308, DOI 10.1007/BF01212897
- Judit Makó and Zsolt Páles, Approximate convexity of Takagi type functions, J. Math. Anal. Appl. 369 (2010), no. 2, 545–554. MR 2651700, DOI 10.1016/j.jmaa.2010.03.063
- J. Makó and Zs. Páles, Strengthening of strong and approximate convexity, Acta Math. Hungar. 132 (2011), no. 1-2, 78–91. MR 2805478, DOI 10.1007/s10474-010-0056-0
- Anna Mureńko, Jacek Tabor, and Józef Tabor, Applications of de Rham theorem in approximate midconvexity, J. Difference Equ. Appl. 18 (2012), no. 3, 335–344. MR 2901825, DOI 10.1080/10236190903156283
- C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 103–108. MR 1159176, DOI 10.1090/S0002-9939-1993-1159176-X
- Zsolt Páles, On approximately convex functions, Proc. Amer. Math. Soc. 131 (2003), no. 1, 243–252. MR 1929044, DOI 10.1090/S0002-9939-02-06552-8
- S. Rolewicz, On paraconvex multifunctions, Third Symposium on Operations Research (Univ. Mannheim, Mannheim, 1978), Section I, Operations Res. Verfahren, vol. 31, Hain, Königstein/Ts., 1979, pp. 539–546. MR 541221
- Stefan Rolewicz, On $\gamma$-paraconvex multifunctions, Math. Japon. 24 (1979/80), no. 3, 293–300. MR 550213
- Stefan Rolewicz, Paraconvex analysis, Control Cybernet. 34 (2005), no. 3, 951–965. MR 2208979
- Jacek Tabor and Józef Tabor, Generalized approximate midconvexity, Control Cybernet. 38 (2009), no. 3, 655–669. MR 2650358
- Jacek Tabor and Józef Tabor, Takagi functions and approximate midconvexity, J. Math. Anal. Appl. 356 (2009), no. 2, 729–737. MR 2524305, DOI 10.1016/j.jmaa.2009.03.053
- Jacek Tabor, Józef Tabor, and Marek Żołdak, Approximately convex functions on topological vector spaces, Publ. Math. Debrecen 77 (2010), no. 1-2, 115–123. MR 2675738, DOI 10.5486/pmd.2010.4617
- Jacek Tabor, Józef Tabor, and Marek Żołdak, Optimality estimations for approximately midconvex functions, Aequationes Math. 80 (2010), no. 1-2, 227–237. MR 2736954, DOI 10.1007/s00010-010-0033-2
- T. Takagi, A simple example of the continuous function without derivative, J. Phys. Math. Soc. Japan 1 (1903), 176–177.
- B. L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion, Math. Z. 32 (1930), no. 1, 474–475 (German). MR 1545179, DOI 10.1007/BF01194647
Bibliographic Information
- Judit Makó
- Affiliation: Institute of Mathematics, University of Debrecen, Pf. 12, H-4010 Debrecen, Hungary
- Email: makoj@science.unideb.hu
- Zsolt Páles
- Affiliation: Institute of Mathematics, University of Debrecen, Pf. 12, H-4010 Debrecen, Hungary
- Email: pales@science.unideb.hu
- Received by editor(s): March 23, 2010
- Received by editor(s) in revised form: October 4, 2011
- Published electronically: January 23, 2013
- Additional Notes: This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK81402 and by the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 and 4.2.2/B-10/1-2010-0024 projects implemented through the New Hungary Development Plan co-financed by the European Social Fund and the European Regional Development Fund.
- Communicated by: Sergei K. Suslov
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 2069-2080
- MSC (2010): Primary 39B62, 26B25
- DOI: https://doi.org/10.1090/S0002-9939-2013-11486-3
- MathSciNet review: 3034432