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A SIMPLE PROOF OF

STOLARSKY’S INVARIANCE PRINCIPLE

JOHANN S. BRAUCHART AND JOSEF DICK

(Communicated by Walter Van Assche)

Abstract. Stolarsky [Proc. Amer. Math. Soc. 41 (1973), 575–582] showed
a beautiful relation that balances the sums of distances of points on the unit
sphere and their spherical cap L2-discrepancy to give the distance integral of
the uniform measure on the sphere which is a potential-theoretical quantity
(Björck [Ark. Mat. 3 (1956), 255–269]). Read differently it expresses the
worst-case numerical integration error for functions from the unit ball in a
certain Hilbert space setting in terms of the L2-discrepancy and vice versa. In
this note we give a simple proof of the invariance principle using reproducing
kernel Hilbert spaces.

1. Introduction

We consider the unit sphere

S
d =

{
z = (z1, . . . , zd+1) ∈ R

d+1 : ‖z‖ =
√
z21 + · · ·+ z2d+1 = 1

}
embedded in the Euclidean space R

d+1, d ≥ 2. Let f : Sd → C be a continuous
function. Then we approximate the integral

∫
Sd

f(x) dσd(x), where σd is the nor-

malized Lebesgue surface area measure on S
d (
∫
Sd

dσd = 1), by an equal weight
numerical integration rule

(1.1) QN (f) =
1

N

N−1∑
k=0

f(zk),

where z0, . . . , zN−1 ∈ S
d are the integration nodes on the sphere. In order to

analyze the integration error committed by the approximation, we define a worst-
case error by

e(H, QN ) = sup
f∈H,‖f‖≤1

∣∣∣∣∣
∫
Sd

f(x) dσd(x)−
1

N

N−1∑
k=0

f(zk)

∣∣∣∣∣ ,
where H denotes a normed function space with norm ‖ · ‖. The rate of decay of the
worst-case error depends on the function space and the integration nodes. For a
fixed function space, the worst-case error can serve as a quality criterion for different
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2086 J. S. BRAUCHART AND J. DICK

sets of integration nodes, meaning that the performance of a set of N quadrature
points z0, . . . , zN−1 can be compared to another set of N quadrature points by
comparing the corresponding worst-case errors. Generally, this only means that
the integration error is smaller, but sometimes the worst-case error also allows a
geometrical interpretation.

Another quality criterion for points on the sphere exploits the potential energy,
or more generally, the Riesz s-energy of configurations of points modeling unit
charges which are thought to interact through a potential 1/‖ · ‖s (s �= 0), where
‖ · ‖ denotes the Euclidean distance. (We refer the reader to the survey papers [10]
and [13] and for universally optimal configurations to [7].) A particular instance is
the (normalized) sum of distances (s = −1)

1

N2

N−1∑
k,�=0

‖zk − z�‖, z0, . . . , zN−1 ∈ S
d.

It is well-known from potential theory (see Björck [3]) that this (discrete) sum of
distances of optimal N -point configurations approaches the associated (continuous)
distance integral of the uniform measure σd on Sd as N → ∞. In fact, any sequence
of N -point systems with this property turns out to be ‘asymptotically uniformly
distributed’; that is, the discrete probability measure obtained by placing equal
charges at the points tends to the uniform measure in the weak-star sense. The
difference

(1.2)

∫
Sd

∫
Sd

‖z − x‖ dσd(z) dσd(x)−
1

N2

N−1∑
k,�=0

‖zk − z�‖

measuring the deviation between theoretical and empirical (−1)-energy quantifies
the quality of points on the sphere (and, indirectly, their uniform distribution) using
energy. It should be mentioned that the upper bound of correct order N−1−1/d for
(1.2) (for optimal configurations) was obtained by Stolarksy [16] using his invariance
principle and a result of Schmidt [14] on the discrepancy of spherical caps. The
correct-order lower bound (N−1−1/d) was established by Beck [2] using his Fourier
transform technique.

The spherical cap discrepancy measures the maximum deviation between the-
oretical and empirical distribution with respect to spherical caps as test sets. It
can be used to compare point sets on the sphere with respect to their distribution
properties. To introduce the concept of spherical cap discrepancy, we require some
notation. A spherical cap centered at x ∈ Sd with ‘height’ t ∈ [−1, 1] is the set

C(x; t) = {z ∈ S
d : 〈x, z〉 ≥ t}.

The family of all spherical caps is denoted by

C = {C(x; t) : x ∈ S
d, t ∈ [−1, 1]}.

For a set J ⊆ Rd+1 we define the indicator function

1J (x) =

{
1 if x ∈ J ,

0 otherwise.

For a measurable set J ⊆ Sd let

σd(J) =

∫
Sd

1J (x) dσd(x).
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A SIMPLE PROOF OF STOLARSKY’S INVARIANCE PRINCIPLE 2087

Using spherical caps we can define another quality criterion for points on the sphere
Sd in terms of their distribution properties. One such criterion is the spherical cap
L2-discrepancy, which is given by

L2(P ) =

⎛
⎝∫ 1

−1

∫
Sd

∣∣∣∣∣σd(C(z; t))− 1

N

N−1∑
k=0

1C(z;t)(zk)

∣∣∣∣∣
2

dσd(z) dt

⎞
⎠

1/2

,

where P = {z0, . . . , zN−1}.
We considered three, seemingly different, measures which can be applied to point

sets on the sphere. It turns out that in some instances, the three measures are
related to each other. Stolarksy’s insight [16] was that the sum of distances of
points on the sphere and the spherical cap discrepancy coincide. On the other hand,
also the sum of distances of points on the sphere and the worst-case error coincide
for a certain choice of function space; see [6] and also Sloan and Womersley [15]
regarding a generalized discrepancy of Cui and Freeden [8].

In this paper we give a simple proof of these results based on reproducing ker-
nel Hilbert spaces. We also provide some generalizations which follow from our
approach.

2. Reproducing kernel Hilbert space

We define a reproducing kernel Hilbert space using the general approach of [12,
Ch. 9.6].

For x,y ∈ S
d we define the function KC : Sd × Sd → R by

(2.1) KC(x,y) =

∫ 1

−1

∫
Sd

1C(z;t)(x)1C(z;t)(y) dσd(z) d t.

Since 1C(z;t)(x) = 1C(x;t)(z), we also have

KC(x,y) =

∫ 1

−1

∫
Sd

1C(x;t)(z)1C(y;t)(z) dσd(z) d t.

The function is obviously symmetric; i.e., we haveKC(x,y) = KC(y,x). Further,
let a0, . . . , aN−1 ∈ C and x0, . . . ,xN−1 ∈ S

d. Then we have

N−1∑
k,�=0

aka�KC(xk,x�) =

∫ 1

−1

∫
Sd

N−1∑
k,�=0

aka�1C(x;t)(xk)1C(x;t)(x�) dσd(x) d t

=

∫ 1

−1

∫
Sd

∣∣∣∣∣
N−1∑
k=0

ak1C(x;t)(xk)

∣∣∣∣∣
2

dσd(x) d t

≥ 0.

Thus, the function KC is symmetric and positive definite. By [1], this implies
that KC is a reproducing kernel. It is also shown in [1] that a reproducing kernel
uniquely defines a Hilbert space of functions with a certain inner product. Let
HC = H(KC, S

d) denote the corresponding reproducing kernel Hilbert space of
functions f : Sd → R with reproducing kernel KC .
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2088 J. S. BRAUCHART AND J. DICK

We now consider functions f1, f2 : Sd → C which permit a certain integral
representation. Let g1, g2 : Sd × [−1, 1] → C with g1, g2 ∈ L2(S

d × [−1, 1]) and

(2.2) fi(x) =

∫ 1

−1

∫
Sd

gi(z; t)1C(z;t)(x) dσd(z) d t, i = 1, 2.

Notice that for any fixed y ∈ S
d the function KC(·,y) also is of this form, where

the function g is given by 1C(z;t)(y) (considered as a function of z and t and where
y is fixed). For functions of this form we can define an inner product by

(2.3) 〈f1, f2〉KC =

∫ 1

−1

∫
Sd

g1(z; t)g2(z; t) dσd(z) dt.

Let y ∈ Sd be fixed. With this definition we obtain

〈f1,KC(·,y)〉KC =

∫ 1

−1

∫
Sd

g1(z; t)1C(z;t)(y) dσd(z) d t = f1(y).

By [1], the inner product in HC is unique. Therefore, the functions fi, which are
given by (2.2) and for which 〈fi, fi〉KC < ∞, are in HC and (2.3) is an inner product
for those functions in HC .

Consider now the reproducing kernel KC . We have∫ 1

−1

1C(z;t)(x)1C(z;t)(y) d t =

∫ min{〈x,z〉,〈y,z〉}

−1

d t = 1 +min{〈x, z〉, 〈y, z〉}.

Thus

KC(x,y) =

∫ 1

−1

∫
Sd

1C(z;t)(x)1C(z;t)(y) dσd(z) d t

= 1 +

∫
Sd

min{〈x, z〉, 〈y, z〉} dσd(z).

We have

min{〈x, z〉, 〈y, z〉} =
1

2
[〈x, z〉+ 〈y, z〉 − |〈x− y, z〉|]

and ∫
Sd

〈x, z〉 dσd(z) = 0.

If x = y, we therefore obtain∫
Sd

min{〈x, z〉, 〈y, z〉} dσd(z) = 0.

Now let x �= y. Then∫
Sd

min{〈x, z〉, 〈y, z〉} dσd(z) = −1

2

∫
Sd

|〈x− y, z〉| dσd(z)

= −‖x− y‖ 1

2

∫
Sd

∣∣∣∣
〈

x− y

‖x− y‖ , z
〉∣∣∣∣ dσd(z).

The last integral does not depend on the unit vector (x−y)/‖x−y‖ by rotational
symmetry. Thus, we have (cf. Appendix A)

Cd :=
1

2

∫
Sd

|〈p, z〉| dσd(z) =
1

d

ωd−1

ωd
=

Hd(B
d)

Hd(Sd)
=

1

d

Γ((d+ 1)/2)√
πΓ(d/2)

∼ 1√
2π d

as d → ∞.

(2.4)
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A SIMPLE PROOF OF STOLARSKY’S INVARIANCE PRINCIPLE 2089

(Here, ωd is the surface area of Sd, Bd is the unit ball in Rd, Hd is the d-dimensional
Hausdorff measure normalized such that the d-dimensional unit cube [0, 1)d has
measure one and Γ(z) is the Gamma function.)

Therefore we obtain the following closed form representation:

(2.5) KC(x,y) = 1− Cd ‖x− y‖ .

The reproducing kernel has the following properties: for y, z ∈ Sd we have

• 1− 2Cd ≤ K(x,y) ≤ 1;
• K(x,y) = 1− 2Cd if and only if x = −y (clearly, 0 < 2Cd < 1);
• K(x,y) = 1 if and only if x = y.

Note that the Karhunen-Loevy expansion of the function ‖x − y‖ is based on
ultraspherical harmonics. Hence the eigenfunctions of KC are the ultraspherical
harmonics. The corresponding eigenvalues are also known. Therefore, the functions
in HC can be expanded using ultraspherical harmonics and the inner product can
be written using the coefficients of such an expansion. See [6] for these results.

3. Worst-case error

Let ‖f‖KC =
√
〈f, f〉KC denote the norm in HC . Then we define the worst-case

error for a quadrature rule QN given in (1.1) by

e(HC , QN ) = sup

{∣∣∣∣
∫
Sd

f(x) dx−QN (f)

∣∣∣∣ : f ∈ HC , ‖f‖KC ≤ 1

}
.

Let f ∈ HC . Then, by the reproducing kernel property f(y) = 〈f,KC(·,y)〉KC for
y ∈ Sd, and, since the integration functional f �→

∫
Sd

f dσd is bounded on HC and

has the ‘representer’
∫
Sd

KC(·, z) dσd(z), one can write

∫
Sd

f(x) dσd(x)−
1

N

N−1∑
k=0

f(xk) = 〈f,R(HC , QN ; ·)〉KC
,

where the ‘representer’ of the error of numerical integration for the rule QN for
functions in HC is given by

R(HC , QN ;x) =

∫
Sd

KC(x,y) dσd(y)−
1

N

N−1∑
k=0

KC(x,xk), x ∈ S
d.

The Cauchy-Schwarz inequality yields∣∣∣∣∣
∫
Sd

f(x) dσd(x)−
1

N

N−1∑
k=0

f(xk)

∣∣∣∣∣ = ∣∣〈f,R(HC, QN ; ·)〉KC

∣∣
≤ ‖f‖KC ‖R(HC , QN ; ·)‖KC

.

In particular, equality is assumed in the last relation when taking f to be the
‘representer’ R(HC , QN ; ·) itself. It follows that

e(HC , QN ) = ‖R(HC , QN ; ·)‖KC

=

∥∥∥∥∥
∫
Sd

KC(·,x) dσd(x)−
1

N

N−1∑
k=0

KC(·,xk)

∥∥∥∥∥
KC

.
(3.1)
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2090 J. S. BRAUCHART AND J. DICK

Expanding the square of the worst-case error and substituting the closed form of
the reproducing kernel we arrive at the well-known representation

[e(HC , QN )]
2
= 〈R(HC, QN ; ·),R(HC, QN ; ·)〉

=

∫
Sd

∫
Sd

KC(x,y) dσd(x) dσd(y)−
2

N

N−1∑
k=0

∫
Sd

KC(x,xk) dσd(x)

+
1

N2

N−1∑
k,�=0

KC(xk,x�)

= Cd

⎡
⎣∫

Sd

∫
Sd

‖x− y‖ dσd(x) dσd(y)−
1

N2

N−1∑
k,�=0

‖xk − x�‖

⎤
⎦ .(3.2)

This shows how the square worst-case error in our reproducing kernel Hilbert
space is related to (1.2). In the next section we show how the worst-case error
e(HC , QN ) in our reproducing kernel Hilbert space is related to the spherical cap
L2-discrepancy.

4. Spherical cap discrepancy and

Stolarsky’s invariance principle

Using the integral representation of the reproducing kernel (2.1) we have∫
Sd

KC(x,y) dσd(y) =

∫ 1

−1

∫
Sd

1C(z;t)(x)σd(C(z; t)) dσd(z) d t

and

1

N

N−1∑
k=0

KC(x,xk) =

∫ 1

−1

∫
Sd

1

N

N−1∑
k=0

1C(x;t)(z)1C(xk;t)(z) dσd(z) d t.

Thus, the ‘representer’ of the error of numerical integration is of the form (2.2);
that is,

R(HC , QN ;x) =

∫ 1

−1

∫
Sd

1C(z;t)(x)

[
σd(C(z; t))− 1

N

N−1∑
k=0

1C(xk;t)(z)

]
dσd(z) d t.

Therefore, using the inner product representation (2.3) in (3.1), we obtain

(4.1) e(HC , QN ) =

⎛
⎝∫ 1

−1

∫
Sd

∣∣∣∣∣σd(C(z; t))− 1

N

N−1∑
k=0

1C(z;t)(xk)

∣∣∣∣∣
2

dσd(z) d t

⎞
⎠

1/2

stating that the worst-case error of the numerical integration formula QN in (1.1)
in the considered Sobolev space setting equals the so-called spherical cap L2-
discrepancy of the integration nodes.

Combining (3.2) and (4.1), we arrive at Stolarsky’s invariance principle for the
Euclidean distance on spheres.
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A SIMPLE PROOF OF STOLARSKY’S INVARIANCE PRINCIPLE 2091

Proposition 4.1 (Stolarsky [16]). Let x0, . . . ,xN−1 ∈ Sd be an arbitrary N-point
configuration on the sphere Sd. Then we have

1

N2

N−1∑
k,�=0

‖xk − x�‖+
1

Cd

∫ 1

−1

∫
Sd

∣∣∣∣∣σd(C(z; t))− 1

N

N−1∑
k=0

1C(z;t)(xk)

∣∣∣∣∣
2

dσd(z) d t

=

∫
Sd

∫
Sd

‖x− y‖ dσd(x) dσd(y).

The L2-discrepancy of an N -point configuration on Sd decreases as its sum of
distances increases and vice versa. The right-hand side is the distance integral of
the uniform measure σd on the sphere Sd which is the unique extremal measure
(also known as the equilibrium measure) maximizing the distance integral

I[μ] :=
∫
Sd

∫
Sd

‖x− y‖dμ(x) dμ(y)

over the family of (Borel) probability measures μ supported on S
d. For the potential

theory of the generalized distance integral we refer to Björck [3].

5. A weighted reproducing kernel

The above results can be generalized by introducing a weight function. Let
v : [−1, 1] → R satisfy v(t) > 0 for all t and which has an antiderivative, which
we denote by V . Then we define the reproducing kernel with weight function v as
follows:

(5.1) KC,v(x,y) =

∫ 1

−1

v(t)

∫
Sd

1C(z;t)(x)1C(z;t)(y) dσd(z) d t, x,y ∈ S
d.

For functions represented by integrals

fi(x) =

∫ 1

−1

∫
Sd

gi(z; t)1C(z;t)(x) dσd(z) d t, i = 1, 2,

the corresponding inner product is now given by

〈f1, f2〉KC,v
=

∫ 1

−1

1

v(t)

∫
Sd

g1(z; t)g2(z; t) dσd(z) d t.

The reproducing kernel can be written as

(5.2) KC,v(x,y) =

∫
Sd

V (min{〈x, z〉, 〈y, z〉}) dσd(z)− V (−1), x,y ∈ S
d.

For certain weight functions v, this expression may have a concise form. This
reproducing kernel defines a reproducing kernel Hilbert space HC,v.

The ‘representer’ of the error of numerical integration for the rule QN for func-
tions in HC,v takes on the form

R(HC,v, QN ;x)

=

∫ 1

−1

∫
Sd

1C(z;t)(x) v(t)

[
σd(C(z; t))− 1

N

N−1∑
k=0

1C(xk;t)(z)

]
dσd(z) d t.
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2092 J. S. BRAUCHART AND J. DICK

We claim that KC,v(x,y) is a function of the inner product 〈x,y〉; cf. Appendix B.
Using the same approach as before we obtain

(5.3) [e(HC,v, QN )]
2
=

1

N2

N−1∑
k,�=0

KC,v(xk,x�)−
∫
Sd

∫
Sd

KC,v(x,y) dσd(x) dσd(y).

This worst case error can also be expressed in terms of a weighted discrepancy
measure:

e(HC,v, QN ) =

∥∥∥∥∥
∫
Sd

KC,v(·,y) dσd(y)−
1

N

N−1∑
k=0

KC,v(·,xk)

∥∥∥∥∥
KC,v

= ‖R(HC,v, QN ; ·)‖KC,v

=

⎛
⎝∫ 1

−1

v(t)

∫
Sd

∣∣∣∣∣σd(C(x; t))− 1

N

N−1∑
k=0

1C(x;t)(xk)

∣∣∣∣∣
2

dσd(x) d t

⎞
⎠

1/2

.(5.4)

Using (5.3) and (5.4) we obtain the weighted version of the Stolarsky invariance
principle.

Theorem 5.1. Let x0, . . . ,xN−1 ∈ Sd be an arbitrary N-point configuration on
the sphere S

d. Let KC,v be the weighted reproducing kernel given by (5.1). Then we
have

1

N2

N−1∑
k,�=0

KC,v(xk,x�) +

∫ 1

−1

v(t)

∫
Sd

∣∣∣∣∣σd(C(x; t))− 1

N

N−1∑
k=0

1C(x;t)(xk)

∣∣∣∣∣
2

dσd(x) dt

=

∫
Sd

∫
Sd

KC,v(x,y) dσd(x) dσd(y).

The double integral above can be expressed in terms of the weight function; see
(B.3).

In [4], Stolarsky’s (general) invariance principle is extended and used to get
bounds for the spherical cap discrepancy; see also [5]. Stolarksy [17] also extended
his principle to certain metric spaces arising from measures.

Stolarsky [16] introduced the function

ρ(x,y) =

∫
Sd

∫ max{〈x,y〉,〈y,t〉}

min{〈x,y〉,〈y,t〉}
g(u) du dσd(z), x,y ∈ S

d,

which becomes a metric if the kernel g (integrable on [0, 1]) is positive, but the
proof of the corresponding invariance principle

1

N2

N−1∑
k,�=0

ρ(xk,x�) + 2

∫ 1

−1

v(t)

∫
Sd

∣∣∣∣∣σd(C(x; t))− 1

N

N−1∑
k=0

1C(x;t)(xk)

∣∣∣∣∣
2

dσd(x) d t

=

∫
Sd

∫
Sd

ρ(x,y) dσd(x) dσd(y)

(5.5)

making use of Haar integrals over the special orthogonal group SO(d+ 1) does not
require it. Note that for g ≡ 1 the function ρ(x,y) is a constant multiple of the
Euclidean distance. With some care one may even consider g(x) = 1/(1− x2).
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It is well-known that a reproducing kernel K(x,y) induces a distance (metric)
by means of

d(x,y) = dK(x,y) =
√
K(x,x)− 2K(x,y) +K(y,y).

For example, the reproducing kernel (2.5) yields

dKC(x,y) =
√
2Cd

√
‖x− y‖.

In general, for the symmetric weighted kernel KC,v(x,y), which does depend only
on the inner product 〈x,y〉, it follows that (a ∈ S

d fixed)

KC,v(x,y) =
1

2

{
[dC,v(x,y)]

2 −KC,v(x,x)−KC,v(y,y)
}

=
1

2
[dC,v(x,y)]

2 −KC,v(a,a).

By Theorem 5.1 one arrives at

1

N2

N−1∑
k,�=0

[dC,v(x,y)]
2
+ 2

∫ 1

−1

v(t)

∫
Sd

∣∣∣∣∣σd(C(x; t))− 1

N

N−1∑
k=0

1C(x;t)(xk)

∣∣∣∣∣
2

dσd(x) dt

=

∫
Sd

∫
Sd

[dC,v(x,y)]
2
dσd(x) dσd(y),

which should be compared with (5.5).

Appendix A. Auxiliary results

The normalized surface area measure σd on S
d admits the following decomposi-

tion:

(A.1) dσd(y) =
ωd−1

ωd

(
1− t2

)d/2−1
d t dσd−1(y

∗), y = (
√
1− t2 y∗, t) ∈ S

d,

where t ∈ [−1, 1], y∗ ∈ Sd−1 and ωd denotes the surface area of Sd (cf. Müller [11]).
(By definition 〈y,p〉 = t, where p is the North Pole of Sd.) Thus, by rotational
symmetry, the integral of a zonal function f(〈z, ·〉), z ∈ Sd fixed, with respect to
σd reduces to∫

Sd

f(〈z,y〉) dσd(y) =

∫
Sd

f(〈p,y〉) dσd(y) =
ωd−1

ωd

∫ 1

−1

f(t)
(
1− t2

)d/2−1
d t.

Proof of relations (2.4). One gets

Cd =
1

2

∫
Sd

|〈p,y〉| dσd(y) =
1

2

ωd−1

ωd

∫ 1

−1

|t|
(
1− t2

)d/2−1
d t

=
1

2

ωd−1

ωd

∫ 1

0

(
1− t2

)d/2−1
2t d t =

1

d

ωd−1

ωd
=

1

d

Γ((d+ 1)/2)√
πΓ(d/2)

=
Hd(B

d)

Hd(Sd)

∼ 1√
2π d

as d → ∞.

The second equality follows from

1 = σd(S
d) =

ωd−1

ωd

∫ 1

−1

(
1− t2

)d/2−1
d t =

ωd−1

ωd

∫ 1

0

v1/2−1 (1− v)
d/2−1

d v

=
ωd−1

ωd
B(1/2, d/2),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2094 J. S. BRAUCHART AND J. DICK

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the beta function. The third equality follows
from the well-known formulas for the volume of the unit ball in Rd and the surface
area of Sd. The asymptotics follows from the asymptotic expansion of a ratio of
Gamma functions (cf. [9]). �

Appendix B. The weighted reproducing kernel

Next, we investigate the weighted reproducing kernel (5.2) in more detail. In
particular, it will be shown that the kernel KC,v(x,y) is a function of the inner
product 〈x,y〉.

On observing that 〈x, z〉 ≤ 〈y, z〉 if and only if 〈y−x, z〉 ≥ 0, we may write for
x �= y,

KC,v(x,y) = AC,v(x,y) +AC,v(y,x)− V (−1),

which immediately shows symmetry of the reproducing kernel, where

(B.1) AC,v(x,y) =

∫
Sd

V (〈x, z〉) 1[0,1](
〈 y − x

‖y − x‖ , z
〉
) dσd(z).

By abuse of notation we set (note that 〈x,y〉 = u)

z = tx+
√
1− t2 z∗, −1 ≤ t ≤ 1, z∗ ∈ S

d−1,

y = ux+
√
1− u2 y∗, −1 ≤ t ≤ 1,y∗ ∈ S

d−1.

In this way x will be the ‘North Pole’ in the decomposition (A.1), and we obtain

AC,v(x,y) =
ωd−1

ωd

∫ 1

−1

V (t)

{∫
Sd−1

1[0,1](
〈 y − x

‖y − x‖ , z
〉
)σd−1(z

∗)

}(
1− t2

)d/2−1
d t.

The indicator function in the inner integral is a zonal function depending on w =
〈y∗, z∗〉 only. Thus, we apply again (A.1) with y∗ as the ‘North Pole’. That is,

AC,v(x,y) =
ωd−1

ωd

∫ 1

−1

V (t)

{
ωd−2

ωd−1

∫ 1

−1

1[0,1](
〈 y − x

‖y − x‖ , z
〉
)
(
1− w2

)(d−1)/2−1
dw

}

×
(
1− t2

)d/2−1
d t,

where the inner product evaluates as (x,y, z ∈ Sd,x �= y)

(B.2)
〈 y − x

‖y − x‖ , z
〉
=
√
1− t2

√
1 + 〈x,y〉

2
w −

√
1− 〈x,y〉

2
t.

Proceeding similarly for AC,v(y,x), one sees that, indeed, AC,v(y,x) = AC,v(x,y).
Furthermore, AC,v(x,y) depends only on the inner product 〈x,y〉, which in turn
implies that the reproducing kernel KC,v(x,y) is a function of the inner product
〈x,y〉.

The right-hand side in (B.2) describes a line which stays strictly between the
levels −1 and 1 for v in [−1, 1] by the left-hand side in (B.2). Further analysis gives

that the indicator function is one (i) if t ≤ −
√
(1 + u)/2 and −1 ≤ v ≤ 1 or (ii)

if −
√
(1 + u)/2 ≤ t ≤

√
(1 + u)/2 and (t/

√
1− t2)

√
(1− u)/(1 + u) ≤ v ≤ 1, and
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zero otherwise. This leads to

AC,v(x,y) =
ωd−1

ωd

∫ −
√

(1+u)/2

−1

V (t)
(
1− t2

)d/2−1
d t

+
ωd−1

ωd

∫ √
(1+u)/2

−
√

(1+u)/2

V (t) I(1−x(t))/2((d− 1)/2, (d− 1)/2)
(
1− t2

)d/2−1
d t,

where, when using u = 〈x,y〉 = cosφ (0 < φ < π) and t = cosψ, one has√
1 + u

2
= cos(φ/2),

√
1− u

1 + u
= tan(φ/2), x(t) =

√
1− u

1 + u

t√
1− t2

=
cotψ

cot(φ/2)
.

The change of variable ξ = x(t) yields

AC,v(x,y) =
ωd−1

ωd

∫ −
√

(1+u)/2

−1

V (t)
(
1− t2

)d/2−1
d t

+
ωd−1

ωd

(
1− u

1 + u

)d/2 ∫ 1

−1

V (
ξ√

1−u
1+u + ξ2

)
I(1−ξ)/2((d− 1)/2, (d− 1)/2)(

1−u
1+u + ξ2

)(d+1)/2
d ξ,

where we make use of the regularized incomplete beta function

Iz(a, b) = Bz(a, b)/B(a, b), Bz(a, b) =

∫ z

0

ta−1(1− t)b−1 d t, a, b > 0.

We compute the following integral (using (B.1)):∫
Sd

AC,v(x,y) dσd(y) =

∫
Sd

V (〈x, z〉)
∫
Sd

1[0,1](
〈 y − x

‖y − x‖ , z
〉
) dσd(y) dσd(z).

The inner integral is one if z is in the half-sphere centered at −x and zero otherwise.
Hence, ∫

Sd

AC,v(x,y) dσd(y) =
ωd−1

ωd

∫ 1

0

V (−t)
(
1− t2

)d/2−1
d t.

Since g′(t) = (ωd−1/ωd)(1 − t2)d/2−1 for g(t) = (1/2) It2(1/2, d/2), 0 ≤ t ≤ 1,
integration by parts gives

∫
Sd

AC,v(x,y) dσd(y) =
1

2
V (−1) +

1

2

∫ 1

0

v(−t) It2(1/2, d/2) d t.

It follows that∫
Sd

∫
Sd

KC,v(x,y) dσd(x) dσd(y) = 2
ωd−1

ωd

∫ 1

0

V (−t)
(
1− t2

)d/2−1
d t− V (−1)

=

∫ 1

0

v(−t) It2(1/2, d/2) d t.(B.3)
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