## Zeros of varying Laguerre–Krall orthogonal polynomials

HTML articles powered by AMS MathViewer

- by Laura Castaño–García and Juan J. Moreno–Balcázar PDF
- Proc. Amer. Math. Soc.
**141**(2013), 2051-2060 Request permission

## Abstract:

In this paper we introduce a sequence of varying orthogonal polynomials related to a Laguerre weight where this absolutely continuous measure is perturbed by a sequence of nonnegative masses located at the origin. The main objective is to obtain asymptotic relations between the zeros of these polynomials and the zeros of the Bessel functions of the first kind (or linear combinations of them). This is done through Mehler–Heine type formulas. With these relations we can easily compute asymptotically the zeros of these polynomials. We show some numerical experiments.## References

- Milton Abramowitz and Irene A. Stegun (eds.),
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR**1225604** - M. Alfaro, J. J. Moreno-Balcázar, A. Peña, and M. L. Rezola,
*A new approach to the asymptotics of Sobolev type orthogonal polynomials*, J. Approx. Theory**163**(2011), no. 4, 460–480. MR**2775140**, DOI 10.1016/j.jat.2010.11.005 - Renato Álvarez-Nodarse and Juan J. Moreno-Balcázar,
*Asymptotic properties of generalized Laguerre orthogonal polynomials*, Indag. Math. (N.S.)**15**(2004), no. 2, 151–165. MR**2071854**, DOI 10.1016/S0019-3577(04)90012-2 - Walter Gautschi,
*Orthogonal polynomials: computation and approximation*, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004. Oxford Science Publications. MR**2061539**, DOI 10.1093/oso/9780198506720.001.0001 - Walter Gautschi,
*Orthogonal polynomials (in Matlab)*, J. Comput. Appl. Math.**178**(2005), no. 1-2, 215–234. MR**2127881**, DOI 10.1016/j.cam.2004.03.029 - Roelof Koekoek,
*Generalizations of the classical Laguerre polynomials and some q-analogues*, ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Dr.)–Technische Universiteit Delft (The Netherlands). MR**2714461** - R. Koekoek and H. G. Meijer,
*A generalization of Laguerre polynomials*, SIAM J. Math. Anal.**24**(1993), no. 3, 768–782. MR**1215437**, DOI 10.1137/0524047 - Allan M. Krall,
*Orthogonal polynomials satisfying fourth order differential equations*, Proc. Roy. Soc. Edinburgh Sect. A**87**(1980/81), no. 3-4, 271–288. MR**606336**, DOI 10.1017/S0308210500015213 - H. L. Krall,
*On orthogonal polynomials satisfying a certain fourth order differential equation*, Pennsylvania State College Studies**1940**(1940), no. 6, 24. MR**2679** - Paul G. Nevai,
*Orthogonal polynomials*, Mem. Amer. Math. Soc.**18**(1979), no. 213, v+185. MR**519926**, DOI 10.1090/memo/0213 - Gábor Szegő,
*Orthogonal polynomials*, 3rd ed., American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1967. MR**0310533**

## Additional Information

**Laura Castaño–García**- Affiliation: Departamento de Estadística y Matemática Aplicada, Universidad de Almería, 04120 Almería, Spain
- Email: lcastano@ual.es
**Juan J. Moreno–Balcázar**- Affiliation: Departamento de Estadística y Matemática Aplicada, Universidad de Almería, 04120 Almería, Spain
- Email: balcazar@ual.es
- Received by editor(s): June 15, 2011
- Received by editor(s) in revised form: October 2, 2011
- Published electronically: January 17, 2013
- Additional Notes: This research was supported by MICINN of Spain under grants MTM2008-06689-C02-01 and MTM2011-28952-C02-01, and Junta de Andalucía (FQM229 and P09–FQM–4643).
- Communicated by: Walter Van Assche
- © Copyright 2013 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**141**(2013), 2051-2060 - MSC (2010): Primary 33C47; Secondary 42C05
- DOI: https://doi.org/10.1090/S0002-9939-2013-11495-4
- MathSciNet review: 3034430