## An example of compact Kähler manifold with nonnegative quadratic bisectional curvature

HTML articles powered by AMS MathViewer

- by Qun Li, Damin Wu and Fangyang Zheng PDF
- Proc. Amer. Math. Soc.
**141**(2013), 2117-2126 Request permission

## Abstract:

We construct a compact Kähler manifold of nonnegative quadratic bisectional curvature which does not admit any Kähler metric of nonnegative orthogonal bisectional curvature. The manifold is a 7-dimensional Kähler $C$-space with second Betti number equal to 1, and its canonical metric is a Kähler-Einstein metric of positive scalar curvature.## References

- Armand Borel,
*Kählerian coset spaces of semisimple Lie groups*, Proc. Nat. Acad. Sci. U.S.A.**40**(1954), 1147–1151. MR**77878**, DOI 10.1073/pnas.40.12.1147 - Armand Borel,
*On the curvature tensor of the Hermitian symmetric manifolds*, Ann. of Math. (2)**71**(1960), 508–521. MR**111059**, DOI 10.2307/1969940 - A. Borel and F. Hirzebruch,
*Characteristic classes and homogeneous spaces. I*, Amer. J. Math.**80**(1958), 458–538. MR**102800**, DOI 10.2307/2372795 - Simon Brendle and Richard M. Schoen,
*Classification of manifolds with weakly $1/4$-pinched curvatures*, Acta Math.**200**(2008), no. 1, 1–13. MR**2386107**, DOI 10.1007/s11511-008-0022-7 - Simon Brendle and Richard Schoen,
*Manifolds with $1/4$-pinched curvature are space forms*, J. Amer. Math. Soc.**22**(2009), no. 1, 287–307. MR**2449060**, DOI 10.1090/S0894-0347-08-00613-9 - A. Chau and L. F. Tam,
*On quadratic orthogonal bisectional curvature*, preprint. To appear in J. Differential Geom. - X. X. Chen,
*On Kähler manifolds with positive orthogonal bisectional curvature*, Adv. Math.**215**(2007), no. 2, 427–445. MR**2355611**, DOI 10.1016/j.aim.2006.11.006 - Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider,
*Compact complex manifolds with numerically effective tangent bundles*, J. Algebraic Geom.**3**(1994), no. 2, 295–345. MR**1257325** - J. X. Fu, Z. Wang, and D. Wu,
*Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature*, arXiv: 1010.2022 - HuiLing Gu and ZhuHong Zhang,
*An extension of Mok’s theorem on the generalized Frankel conjecture*, Sci. China Math.**53**(2010), no. 5, 1253–1264. MR**2653275**, DOI 10.1007/s11425-010-0013-y - Alan Howard, Brian Smyth, and H. Wu,
*On compact Kähler manifolds of nonnegative bisectional curvature. I*, Acta Math.**147**(1981), no. 1-2, 51–56. MR**631087**, DOI 10.1007/BF02392867 - Mitsuhiro Itoh,
*On curvature properties of Kähler $C$-spaces*, J. Math. Soc. Japan**30**(1978), no. 1, 39–71. MR**470904**, DOI 10.2969/jmsj/03010039 - Q. Li, D. Wu, and F. Zheng,
*Quadratic bisectional curvature and constant rank theorems*, in preparation. - Ngaiming Mok,
*The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature*, J. Differential Geom.**27**(1988), no. 2, 179–214. MR**925119** - Hsien-Chung Wang,
*Closed manifolds with homogeneous complex structure*, Amer. J. Math.**76**(1954), 1–32. MR**66011**, DOI 10.2307/2372397 - H. Wu,
*On compact Kähler manifolds of nonnegative bisectional curvature. II*, Acta Math.**147**(1981), no. 1-2, 57–70. MR**631088**, DOI 10.1007/BF02392868 - Damin Wu, Shing-Tung Yau, and Fangyang Zheng,
*A degenerate Monge-Ampère equation and the boundary classes of Kähler cones*, Math. Res. Lett.**16**(2009), no. 2, 365–374. MR**2496750**, DOI 10.4310/MRL.2009.v16.n2.a12 - Xiangwen Zhang,
*On the boundary of Kähler cones*, Proc. Amer. Math. Soc.**140**(2012), no. 2, 701–705. MR**2846339**, DOI 10.1090/S0002-9939-2011-10929-8 - Fangyang Zheng,
*Complex differential geometry*, AMS/IP Studies in Advanced Mathematics, vol. 18, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2000. MR**1777835**, DOI 10.1090/amsip/018

## Additional Information

**Qun Li**- Affiliation: Department of Mathematics and Statistics, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio 45435
- Email: qun.li@wright.edu
**Damin Wu**- Affiliation: Department of Mathematics, The Ohio State University, 1179 University Drive, Newark, Ohio 43055
- Address at time of publication: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
- MR Author ID: 799841
- Email: dwu@math.ohio-state.edu, damin.wu@uconn.edu
**Fangyang Zheng**- Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210 – and – Center for Mathematical Sciences, Zhejiang University, Hangzhou, 310027 People’s Republic of China
- MR Author ID: 272367
- Email: zheng@math.ohio-state.edu
- Received by editor(s): October 7, 2011
- Published electronically: February 12, 2013
- Communicated by: Lei Ni
- © Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 2117-2126 - MSC (2010): Primary 32M10, 53C55; Secondary 53C21, 53C30
- DOI: https://doi.org/10.1090/S0002-9939-2013-11596-0
- MathSciNet review: 3034437