Blow-up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions
HTML articles powered by AMS MathViewer
- by L. E. Payne and G. A. Philippin
- Proc. Amer. Math. Soc. 141 (2013), 2309-2318
- DOI: https://doi.org/10.1090/S0002-9939-2013-11493-0
- Published electronically: February 20, 2013
- PDF | Request permission
Abstract:
A class of initial boundary value problems for the semilinear heat equation with time dependent coefficients is considered. Using a first order differential inequality technique, the influence of the data on the behaviour of the solutions (blow-up in finite or infinite time, global existence) is investigated. Lower and upper bounds are derived for the blow-up time when blow-up occurs.References
- J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 473–486. MR 473484, DOI 10.1093/qmath/28.4.473
- Catherine Bandle and Hermann Brunner, Blowup in diffusion equations: a survey, J. Comput. Appl. Math. 97 (1998), no. 1-2, 3–22. MR 1651764, DOI 10.1016/S0377-0427(98)00100-9
- Cristian Enache, Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition, Appl. Math. Lett. 24 (2011), no. 3, 288–292. MR 2741031, DOI 10.1016/j.aml.2010.10.006
- Cristian Enache, Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions, Glasg. Math. J. 53 (2011), no. 3, 569–575. MR 2822799, DOI 10.1017/S0017089511000139
- Stanley Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305–330. MR 160044, DOI 10.1002/cpa.3160160307
- Hansjörg Kielhöfer, Halbgruppen und semilineare Anfangs-Randwertprobleme, Manuscripta Math. 12 (1974), 121–152 (German, with English summary). MR 344681, DOI 10.1007/BF01168647
- Howard A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_{t}=-Au+{\scr F}(u)$, Arch. Rational Mech. Anal. 51 (1973), 371–386. MR 348216, DOI 10.1007/BF00263041
- L. E. Payne, G. A. Philippin, and P. W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems, J. Math. Anal. Appl. 338 (2008), no. 1, 438–447. MR 2386428, DOI 10.1016/j.jmaa.2007.05.022
- L. E. Payne, G. A. Philippin, and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. 69 (2008), no. 10, 3495–3502. MR 2450554, DOI 10.1016/j.na.2007.09.035
- L. E. Payne, G. A. Philippin, and S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I, Z. Angew. Math. Phys. 61 (2010), no. 6, 999–1007. MR 2738300, DOI 10.1007/s00033-010-0071-6
- L. E. Payne, G. A. Philippin, and S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II, Nonlinear Anal. 73 (2010), no. 4, 971–978. MR 2653764, DOI 10.1016/j.na.2010.04.023
- L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Neumann conditions, Appl. Anal. 85 (2006), no. 10, 1301–1311. MR 2263927, DOI 10.1080/00036810600915730
- L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl. 328 (2007), no. 2, 1196–1205. MR 2290045, DOI 10.1016/j.jmaa.2006.06.015
- L. E. Payne and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems, Int. J. Pure Appl. Math. 48 (2008), no. 2, 193–202. MR 2463922
- L. E. Payne and P. W. Schaefer, Bounds for blow-up time for the heat equation under nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 6, 1289–1296. MR 2557324, DOI 10.1017/S0308210508000802
- L. E. Payne and J. C. Song, Lower bounds for blow-up time in a nonlinear parabolic problem, J. Math. Anal. Appl. 354 (2009), no. 1, 394–396. MR 2510449, DOI 10.1016/j.jmaa.2009.01.010
- G. A. Philippin and V. Proytcheva, Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems, Math. Methods Appl. Sci. 29 (2006), no. 3, 297–307. MR 2191431, DOI 10.1002/mma.679
- Pavol Quittner, On global existence and stationary solutions for two classes of semilinear parabolic problems, Comment. Math. Univ. Carolin. 34 (1993), no. 1, 105–124. MR 1240209
- Pavol Quittner and Philippe Souplet, Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states. MR 2346798
- Brian Straughan, Explosive instabilities in mechanics, Springer-Verlag, Berlin, 1998. MR 1637904, DOI 10.1007/978-3-642-58807-5
- Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. MR 463908, DOI 10.1007/BF02418013
- Juan Luis Vázquez, The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004), no. 3-4, 281–300. MR 2148886
- Fred B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^{p}$, Indiana Univ. Math. J. 29 (1980), no. 1, 79–102. MR 554819, DOI 10.1512/iumj.1980.29.29007
- Fred B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), no. 1-2, 29–40. MR 599472, DOI 10.1007/BF02761845
Bibliographic Information
- L. E. Payne
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
- G. A. Philippin
- Affiliation: Département de Mathématiques et de Statistique, Université Laval, Québec, Canada G1V 0A6
- Email: gphilip@mat.ulaval.ca
- Received by editor(s): July 9, 2011
- Received by editor(s) in revised form: October 9, 2011
- Published electronically: February 20, 2013
- Communicated by: Michael Hitrik
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 2309-2318
- MSC (2010): Primary 35K55, 35K61, 35B30, 35B44
- DOI: https://doi.org/10.1090/S0002-9939-2013-11493-0
- MathSciNet review: 3043012