Classification of Cuntz–Krieger algebras by orbit equivalence of topological Markov shifts
HTML articles powered by AMS MathViewer
- by Kengo Matsumoto
- Proc. Amer. Math. Soc. 141 (2013), 2329-2342
- DOI: https://doi.org/10.1090/S0002-9939-2013-11519-4
- Published electronically: March 4, 2013
- PDF | Request permission
Abstract:
Let $A, B$ be square irreducible matrices with entries in $\{0,1 \}$. Assume that the determinants of $1-A$ and $1-B$ have the same sign. We will show that the Cuntz–Krieger algebras ${\mathcal O}_A$ and ${\mathcal O}_B$ are isomorphic if and only if the right one-sided topological Markov shifts $(X_A,\sigma _A)$ and $(X_B,\sigma _B)$ are continuously orbit equivalent.References
- Rufus Bowen and John Franks, Homology for zero-dimensional nonwandering sets, Ann. of Math. (2) 106 (1977), no. 1, 73–92. MR 458492, DOI 10.2307/1971159
- McBlaine Michael Boyle, TOPOLOGICAL ORBIT EQUIVALENCE AND FACTOR MAPS IN SYMBOLIC DYNAMICS, ProQuest LLC, Ann Arbor, MI, 1983. Thesis (Ph.D.)–University of Washington. MR 2632783
- Mike Boyle and David Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169–210. MR 1418293, DOI 10.1007/BF02761039
- Mike Boyle and Jun Tomiyama, Bounded topological orbit equivalence and $C^*$-algebras, J. Math. Soc. Japan 50 (1998), no. 2, 317–329. MR 1613140, DOI 10.2969/jmsj/05020317
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330, DOI 10.1007/BF01625776
- J. Cuntz, A class of $C^{\ast }$-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for $C^{\ast }$-algebras, Invent. Math. 63 (1981), no. 1, 25–40. MR 608527, DOI 10.1007/BF01389192
- Joachim Cuntz, $K$-theory for certain $C^{\ast }$-algebras, Ann. of Math. (2) 113 (1981), no. 1, 181–197. MR 604046, DOI 10.2307/1971137
- J. Cuntz, The classification problem for the $C^\ast$-algebras ${\scr O}_A$, Geometric methods in operator algebras (Kyoto, 1983) Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 145–151. MR 866492
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
- Masatoshi Enomoto, Masatoshi Fujii, and Yasuo Watatani, $K_{0}$-groups and classifications of Cuntz-Krieger algebras, Math. Japon. 26 (1981), no. 4, 443–460. MR 634920
- John Franks, Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 53–66. MR 758893, DOI 10.1017/S0143385700002261
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51–111. MR 1363826
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Full groups of Cantor minimal systems, Israel J. Math. 111 (1999), 285–320. MR 1710743, DOI 10.1007/BF02810689
- Thierry Giordano, Hiroki Matui, Ian F. Putnam, and Christian F. Skau, Orbit equivalence for Cantor minimal $\Bbb Z^2$-systems, J. Amer. Math. Soc. 21 (2008), no. 3, 863–892. MR 2393431, DOI 10.1090/S0894-0347-08-00595-X
- Danrung Huang, Flow equivalence of reducible shifts of finite type, Ergodic Theory Dynam. Systems 14 (1994), no. 4, 695–720. MR 1304139, DOI 10.1017/S0143385700008129
- Danrun Huang, Flow equivalence of reducible shifts of finite type and Cuntz-Krieger algebras, J. Reine Angew. Math. 462 (1995), 185–217. MR 1329907, DOI 10.1515/crll.1995.462.185
- Bruce P. Kitchens, Symbolic dynamics, Universitext, Springer-Verlag, Berlin, 1998. One-sided, two-sided and countable state Markov shifts. MR 1484730, DOI 10.1007/978-3-642-58822-8
- Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 1369092, DOI 10.1017/CBO9780511626302
- Kengo Matsumoto, On automorphisms of $C^*$-algebras associated with subshifts, J. Operator Theory 44 (2000), no. 1, 91–112. MR 1774695
- Kengo Matsumoto, Orbit equivalence in $C^*$-algebras defined by actions of symbolic dynamical systems, Operator structures and dynamical systems, Contemp. Math., vol. 503, Amer. Math. Soc., Providence, RI, 2009, pp. 121–140. MR 2590619, DOI 10.1090/conm/503/09896
- Kengo Matsumoto, Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Pacific J. Math. 246 (2010), no. 1, 199–225. MR 2645883, DOI 10.2140/pjm.2010.246.199
- K. Matsumoto, Some remarks on orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras, to appear in Yokohama Math. J.
- Hiroki Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 27–56. MR 2876963, DOI 10.1112/plms/pdr029
- Bill Parry and Dennis Sullivan, A topological invariant of flows on $1$-dimensional spaces, Topology 14 (1975), no. 4, 297–299. MR 405385, DOI 10.1016/0040-9383(75)90012-9
- Alan L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Mathematics, vol. 170, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1724106, DOI 10.1007/978-1-4612-1774-9
- Ian F. Putnam, The $C^*$-algebras associated with minimal homeomorphisms of the Cantor set, Pacific J. Math. 136 (1989), no. 2, 329–353. MR 978619, DOI 10.2140/pjm.1989.136.329
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266, DOI 10.1007/BFb0091072
- Mikael Rørdam, Classification of Cuntz-Krieger algebras, $K$-Theory 9 (1995), no. 1, 31–58. MR 1340839, DOI 10.1007/BF00965458
- Jun Tomiyama, Topological full groups and structure of normalizers in transformation group $C^\ast$-algebras, Pacific J. Math. 173 (1996), no. 2, 571–583. MR 1394406, DOI 10.2140/pjm.1996.173.571
- Jun Tomiyama, Representations of topological dynamical systems and $C^\ast$-algebras, Operator algebras and operator theory (Shanghai, 1997) Contemp. Math., vol. 228, Amer. Math. Soc., Providence, RI, 1998, pp. 351–364. MR 1667670, DOI 10.1090/conm/228/03297
Bibliographic Information
- Kengo Matsumoto
- Affiliation: Department of Mathematics, Joetsu University of Education, Joetsu, 943-8512, Japan
- MR Author ID: 205406
- Email: kengo@juen.ac.jp
- Received by editor(s): July 13, 2011
- Received by editor(s) in revised form: October 12, 2011
- Published electronically: March 4, 2013
- Communicated by: Bryna Kra
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 2329-2342
- MSC (2010): Primary 46L55; Secondary 46L35, 37B10
- DOI: https://doi.org/10.1090/S0002-9939-2013-11519-4
- MathSciNet review: 3043014