Examples of degenerations of Cohen-Macaulay modules
HTML articles powered by AMS MathViewer
- by Naoya Hiramatsu and Yuji Yoshino
- Proc. Amer. Math. Soc. 141 (2013), 2275-2288
- DOI: https://doi.org/10.1090/S0002-9939-2013-11523-6
- Published electronically: March 22, 2013
- PDF | Request permission
Abstract:
We study the degeneration problem for maximal Cohen-Macaulay modules and give several examples of such degenerations. It is proved that such degenerations over an even-dimensional simple hypersurface singularity of type $(A_n)$ are given by extensions. We also prove that all extended degenerations of maximal Cohen-Macaulay modules over a Cohen-Macaulay complete local algebra of finite representation type are obtained by iteration of extended degenerations of Auslander-Reiten sequences.References
- Maurice Auslander and Idun Reiten, Grothendieck groups of algebras and orders, J. Pure Appl. Algebra 39 (1986), no. 1-2, 1–51. MR 816889, DOI 10.1016/0022-4049(86)90135-0
- Klaus Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), no. 2, 245–287. MR 1402728, DOI 10.1006/aima.1996.0053
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Christine Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 275–301. MR 868301, DOI 10.24033/asens.1508
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937, DOI 10.1017/CBO9780511600685
- Yuji Yoshino, On degenerations of Cohen-Macaulay modules, J. Algebra 248 (2002), no. 1, 272–290. MR 1879018, DOI 10.1006/jabr.2001.8991
- Yuji Yoshino, On degenerations of modules, J. Algebra 278 (2004), no. 1, 217–226. MR 2068075, DOI 10.1016/j.jalgebra.2003.10.020
- Yuji Yoshino, Degeneration and G-dimension of modules, Commutative algebra, Lect. Notes Pure Appl. Math., vol. 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 259–265. MR 2184802, DOI 10.1201/9781420028324.ch18
- Yuji Yoshino, Stable degenerations of Cohen-Macaulay modules, J. Algebra 332 (2011), 500–521. MR 2774701, DOI 10.1016/j.jalgebra.2010.11.005
- Grzegorz Zwara, A degeneration-like order for modules, Arch. Math. (Basel) 71 (1998), no. 6, 437–444. MR 1653391, DOI 10.1007/s000130050288
- Grzegorz Zwara, Degenerations for modules over representation-finite algebras, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1313–1322. MR 1476404, DOI 10.1090/S0002-9939-99-04714-0
- Grzegorz Zwara, Degenerations of finite-dimensional modules are given by extensions, Compositio Math. 121 (2000), no. 2, 205–218. MR 1757882, DOI 10.1023/A:1001778532124
Bibliographic Information
- Naoya Hiramatsu
- Affiliation: Department of General Education, Kure National College of Technology, 2-2-11, Agaminami, Kure Hiroshima, 737-8506 Japan
- MR Author ID: 889120
- Email: hiramatsu@kure-nct.ac.jp
- Yuji Yoshino
- Affiliation: Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Email: yoshino@math.okayama-u.ac.jp
- Received by editor(s): December 24, 2010
- Received by editor(s) in revised form: September 2, 2011, and October 20, 2011
- Published electronically: March 22, 2013
- Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2013 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 2275-2288
- MSC (2010): Primary 13C14; Secondary 13D10, 16G50, 16G60, 16G70
- DOI: https://doi.org/10.1090/S0002-9939-2013-11523-6
- MathSciNet review: 3043009