Contractible polyhedra in products of trees and absolute retracts in products of dendrites
HTML articles powered by AMS MathViewer
- by Sergey A. Melikhov and Justyna Zaja̧c
- Proc. Amer. Math. Soc. 141 (2013), 2519-2535
- DOI: https://doi.org/10.1090/S0002-9939-2013-11524-8
- Published electronically: February 21, 2013
- PDF | Request permission
Abstract:
We show that a compact $n$-polyhedron PL embeds in a product of $n$ trees if and only if it collapses onto an $(n-1)$-polyhedron. If the $n$-polyhedron is contractible and $n\ne 3$ (or $n=3$ and the Andrews–Curtis Conjecture holds), the product of trees may be assumed to collapse onto the image of the embedding.
In contrast, there exists a $2$-dimensional compact absolute retract $X$ such that $X\times I^k$ does not embed in any product of $2+k$ dendrites for each $k$.
References
- Cynthia Hog-Angeloni and Wolfgang Metzler (eds.), Two-dimensional homotopy and combinatorial group theory, London Mathematical Society Lecture Note Series, vol. 197, Cambridge University Press, Cambridge, 1993. MR 1279174, DOI 10.1017/CBO9780511629358
- T. Banakh and V. Valov, General Position Properties in Fiberwise Geometric Topology (2010). arxiv:1001:2494.
- I. Berstein, M. Cohen, and R. Connelly, Contractible, non-collapsible products with cubes, Topology 17 (1978), no. 2, 183–187. MR 467762, DOI 10.1016/S0040-9383(78)90023-X
- Karol Borsuk, Über das Phänomen der Unzerlegbarkeit in der Polyedertopologie, Comment. Math. Helv. 8 (1935), no. 1, 142–148 (German). MR 1509522, DOI 10.1007/BF01199551
- Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
- K. Borsuk, Remark on the Cartesian product of two $l$-dimensional spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), no. 9, 971–973 (English, with Russian summary). MR 394636
- Philip L. Bowers, General position properties satisfied by finite products of dendrites, Trans. Amer. Math. Soc. 288 (1985), no. 2, 739–753. MR 776401, DOI 10.1090/S0002-9947-1985-0776401-5
- Javier Bracho and Luis Montejano, The scorpions: examples in stable noncollapsibility and in geometric category theory, Topology 30 (1991), no. 4, 541–550. MR 1133871, DOI 10.1016/0040-9383(91)90038-6
- Glen E. Bredon, Sheaf theory, 2nd ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997. MR 1481706, DOI 10.1007/978-1-4612-0647-7
- R. P. Carpentier, Extending triangulations of the $2$-sphere to the $3$-disk preserving a $4$-coloring. arxiv:1101:5537., DOI 10.2140/pjm.2012.257.257
- Marshall M. Cohen, Simplicial structures and transverse cellularity, Ann. of Math. (2) 85 (1967), 218–245. MR 210143, DOI 10.2307/1970440
- Marshall M. Cohen, Whitehead torsion, group extensions, and Zeeman’s conjecture in highdimensions, Topology 16 (1977), no. 1, 79–88. MR 436155, DOI 10.1016/0040-9383(77)90031-3
- M. L. Curtis, On $2$-complexes in 4-space, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 204–207. MR 0140114
- J. Dydak, J. Segal, and S. Spież, On questions of strict contractibility, Topology Appl. 120 (2002), no. 1-2, 67–75. In memory of T. Benny Rushing. MR 1895484, DOI 10.1016/S0166-8641(01)00008-6
- Steve Fisk, Variations on coloring, surfaces and higher-dimensional manifolds, Advances in Math. 25 (1977), no. 3, 226–266. MR 454979, DOI 10.1016/0001-8708(77)90075-5
- David Gillman, The Poincaré conjecture is true in the product of any graph with a disk, Proc. Amer. Math. Soc. 110 (1990), no. 3, 829–834. MR 1021898, DOI 10.1090/S0002-9939-1990-1021898-6
- David Gillman, Sergei Matveev, and Dale Rolfsen, Collapsing and reconstruction of manifolds, Geometric topology (Haifa, 1992) Contemp. Math., vol. 164, Amer. Math. Soc., Providence, RI, 1994, pp. 35–39. MR 1282753, DOI 10.1090/conm/164/01583
- A. È. Harlap, Local homology and cohomology, homological dimension, and generalized manifolds, Mat. Sb. (N.S.) 96(138) (1975), 347–373, 503 (Russian). MR 0645364
- Allen Hatcher and Nathalie Wahl, Stabilization for mapping class groups of 3-manifolds, Duke Math. J. 155 (2010), no. 2, 205–269. MR 2736166, DOI 10.1215/00127094-2010-055
- Bruce Hughes and Andrew Ranicki, Ends of complexes, Cambridge Tracts in Mathematics, vol. 123, Cambridge University Press, Cambridge, 1996. MR 1410261, DOI 10.1017/CBO9780511526299
- J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65–76. MR 182949, DOI 10.1007/BF02566944
- Ivan Izmestiev, Extension of colorings, European J. Combin. 26 (2005), no. 5, 779–781. MR 2127696, DOI 10.1016/j.ejc.2004.03.005
- V. P. Kompaniec and A. V. Černavskiĭ, Equivalence of two classes of sphere mappings, Soviet Math. Dokl. 7 (1966), 1083–1085. MR 0240788
- Akira Koyama, Józef Krasinkiewicz, and Stanisław Spież, Generalized manifolds in products of curves, Trans. Amer. Math. Soc. 363 (2011), no. 3, 1509–1532. MR 2737275, DOI 10.1090/S0002-9947-2010-05157-8
- A. Koyama, J. Krasinkiewicz, and S. Spież, Embedding compacta into products of curves. arxiv:0712:3470v1.
- J. Krasinkiewicz and P. Minc, On a notion dual to local connectedness, Proc. Int. Conf. on Geometric Topology, PWN (Polish Sci. Publ.), Warszawa, 1980, pp. 265–267.
- J. Krasinkiewicz and S. Spież, On embedding of the dunce hat, Proc. Amer. Math. Soc. (to appear).
- Reinhold Kreher and Wolfgang Metzler, Simpliziale Transformationen von Polyedern und die Zeeman-Vermutung, Topology 22 (1983), no. 1, 19–26 (German). MR 682057, DOI 10.1016/0040-9383(83)90043-5
- Włodzimierz Kuperberg, On embeddings of manifolds into Cartesian products of compacta, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 9-10, 845–848 (English, with Russian summary). MR 518991
- Jie Hua Mai and Yun Tang, An injective metrization for collapsible polyhedra, Proc. Amer. Math. Soc. 88 (1983), no. 2, 333–337. MR 695270, DOI 10.1090/S0002-9939-1983-0695270-9
- William S. Massey, Homology and cohomology theory, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 46, Marcel Dekker, Inc., New York-Basel, 1978. An approach based on Alexander-Spanier cochains. MR 0488016
- Sergei Matveev, Algorithmic topology and classification of 3-manifolds, 2nd ed., Algorithms and Computation in Mathematics, vol. 9, Springer, Berlin, 2007. MR 2341532
- Sibe Mardešić and Jack Segal, $\varepsilon$-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146–164. MR 158367, DOI 10.1090/S0002-9947-1963-0158367-X
- S. A. Melikhov, Steenrod homotopy, Uspekhi Mat. Nauk 64 (2009), no. 3(387), 73–166 (Russian, with Russian summary); English transl., Russian Math. Surveys 64 (2009), no. 3, 469–551. MR 2553079, DOI 10.1070/RM2009v064n03ABEH004620
- S. A. Melikhov, Combinatorics of combinatorial topology. arxiv:1208.6309v1.
- S. A. Melikhov and E. V. Shchepin, The telescope approach to embeddability of compacta. arxiv:math.GT/0612085v1.
- John Milnor, On the Steenrod homology theory, Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993) London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 79–96. MR 1388297, DOI 10.1017/CBO9780511662676.005
- J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337–341. MR 159327, DOI 10.2140/pjm.1962.12.337
- J. Nagata, Note on dimension theory for metric spaces, Fund. Math. 45 (1958), 143–181. MR 105081, DOI 10.4064/fm-45-1-143-181
- L. Pontryagin, A classification of continuous transformations of a complex into a sphere. I, Dokl. Akad. Nauk. SSSR (C. R. Acad. Sci. de l’URSS) 19 (1938), 361–363 (English).
- Frank Quinn, Lectures on controlled topology: mapping cylinder neighborhoods, Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001) ICTP Lect. Notes, vol. 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, pp. 461–489. MR 1937021
- J. Segal, A. Skopenkov, and S. Spież, Embeddings of polyhedra in $\mathbf R^m$ and the deleted product obstruction, Topology Appl. 85 (1998), no. 1-3, 335–344. 8th Prague Topological Symposium on General Topology and Its Relations to Modern Analysis and Algebra (1996). MR 1617472, DOI 10.1016/S0166-8641(97)00157-0
- E. G. Skljarenko, On homologically locally connected spaces, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 6, 1417–1433, 1440 (Russian). MR 603583
- E. G. Sklyarenko, The homology and cohomology of general spaces, Current problems in mathematics. Fundamental directions, Vol. 50 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 129–266 (Russian). MR 1004026
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Y. Sternfeld, Linear superpositions with mappings which lower dimension, Trans. Amer. Math. Soc. 277 (1983), no. 2, 529–543. MR 694374, DOI 10.1090/S0002-9947-1983-0694374-9
- Yaki Sternfeld, Mappings in dendrites and dimension, Houston J. Math. 19 (1993), no. 3, 483–497. MR 1242434
- M. van de Vel, Collapsible polyhedra and median spaces, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2811–2818. MR 1452832, DOI 10.1090/S0002-9939-98-04413-X
- E. R. Verheul, Multimedians in metric and normed spaces, CWI Tract, vol. 91, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1993. MR 1244813
- J. H. C. Whitehead, Note on the condition $n$-colc, Michigan Math. J. 4 (1957), 25–26. MR 87092
- Robert E. Williamson Jr., Cobordism of combinatorial manifolds, Ann. of Math. (2) 83 (1966), 1–33. MR 184242, DOI 10.2307/1970467
- N. Witte, Entfaltung simplizialer Sphären, Technischen Universität Berlin, 2004. Diplomarbeit (Master Thesis).
- E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341–358. MR 156351, DOI 10.1016/0040-9383(63)90014-4
- Zhong Mou Li, Every $3$-manifold with boundary embeds in $\textrm {Triod}\times \textrm {Triod}\times I$, Proc. Amer. Math. Soc. 122 (1994), no. 2, 575–579. MR 1254861, DOI 10.1090/S0002-9939-1994-1254861-4
Bibliographic Information
- Sergey A. Melikhov
- Affiliation: Steklov Mathematical Institute of the Russian Academy of Sciences, ul. Gubkina 8, Moscow 119991, Russia
- MR Author ID: 666677
- ORCID: 0000-0001-6833-8292
- Email: melikhov@mi.ras.ru
- Justyna Zaja̧c
- Affiliation: Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
- Email: jzajac@mimuw.edu.pl
- Received by editor(s): May 17, 2011
- Received by editor(s) in revised form: September 29, 2011, October 7, 2011, and October 8, 2011
- Published electronically: February 21, 2013
- Additional Notes: The first author is supported by Russian Foundation for Basic Research Grant No. 11-01-00822, Russian Government project 11.G34.31.0053 and Federal Program “Scientific and Scientific-Pedagogical Staff of Innovative Russia” 2009–2013
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 2519-2535
- MSC (2010): Primary 54C25, 57Q35; Secondary 55P57, 06A07, 57M20, 55M15
- DOI: https://doi.org/10.1090/S0002-9939-2013-11524-8
- MathSciNet review: 3043032