Robustly non-hyperbolic transitive endomorphisms on $\mathbb {T}^2$
HTML articles powered by AMS MathViewer
- by Baolin He and Shaobo Gan
- Proc. Amer. Math. Soc. 141 (2013), 2453-2465
- DOI: https://doi.org/10.1090/S0002-9939-2013-11527-3
- Published electronically: April 5, 2013
- PDF | Request permission
Abstract:
We prove that for any regular endomorphism $f$ on a 2-torus $\mathbb {T}^2$ which is not one to one, there is a regular map $g$ homotopic to $f$ such that $g$ is $C^1$ robustly non-hyperbolic transitive. We also introduce interesting blender phenomena (a fat horseshoe) of 2-dimensional endomorphisms, which play an important role in our construction of some examples.References
- Flavio Abdenur, Christian Bonatti, Sylvain Crovisier, and Lorenzo J. Díaz, Generic diffeomorphisms on compact surfaces, Fund. Math. 187 (2005), no. 2, 127–159. MR 2214876, DOI 10.4064/fm187-2-3
- Flavio Abdenur, Christian Bonatti, and Lorenzo J. Díaz, Non-wandering sets with non-empty interiors, Nonlinearity 17 (2004), no. 1, 175–191. MR 2023438, DOI 10.1088/0951-7715/17/1/011
- N. Aoki and K. Hiraide, Topological theory of dynamical systems, North-Holland Mathematical Library, vol. 52, North-Holland Publishing Co., Amsterdam, 1994. Recent advances. MR 1289410, DOI 10.1016/S0924-6509(08)70166-1
- R. L. Adler and R. Palais, Homeomorphic conjugacy of automorphisms on the torus, Proc. Amer. Math. Soc. 16 (1965), 1222–1225. MR 193181, DOI 10.1090/S0002-9939-1965-0193181-8
- J. C. Alexander and J. A. Yorke, Fat baker’s transformations, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 1–23. MR 758890, DOI 10.1017/S0143385700002236
- Pierre Berger, Persistence of stratifications of normally expanded laminations, C. R. Math. Acad. Sci. Paris 346 (2008), no. 13-14, 767–772 (English, with English and French summaries). MR 2427079, DOI 10.1016/j.crma.2008.04.018
- Christian Bonatti and Lorenzo J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2) 143 (1996), no. 2, 357–396. MR 1381990, DOI 10.2307/2118647
- C. Bonatti, L. J. Díaz, and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158 (2003), no. 2, 355–418 (English, with English and French summaries). MR 2018925, DOI 10.4007/annals.2003.158.355
- Rodrigo Bamón, Jan Kiwi, Juan Rivera-Letelier, and Richard Urzúa, On the topology of solenoidal attractors of the cylinder, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 2, 209–236 (English, with English and French summaries). MR 2201152, DOI 10.1016/j.anihpc.2005.03.002
- L. J. Díaz, Cycles, partial hyperbolicity, and transitivity, http://www.mat.puc-rio.br/ ~lodiaz/publ.html.
- Lorenzo J. Díaz, Enrique R. Pujals, and Raúl Ures, Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), no. 1, 1–43. MR 1719547, DOI 10.1007/BF02392945
- Federico Rodriguez Hertz, Maria Alejandra Rodriguez Hertz, and Raul Ures, A survey of partially hyperbolic dynamics, Partially hyperbolic dynamics, laminations, and Teichmüller flow, Fields Inst. Commun., vol. 51, Amer. Math. Soc., Providence, RI, 2007, pp. 35–87. MR 2388690
- Pei-Dong Liu, Stability of orbit spaces of endomorphisms, Manuscripta Math. 93 (1997), no. 1, 109–128. MR 1446193, DOI 10.1007/BF02677460
- C. Lizana and E. Pujals, Robust transitivity for endomorphisms, Ergodic Theory and Dynam. Systems, to appear, http://dx.doi.org/10.1017/s0143385712000247
- Ricardo Mañé, Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383–396. MR 516217, DOI 10.1016/0040-9383(78)90005-8
- Ricardo Mañé, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503–540. MR 678479, DOI 10.2307/2007021
- Kazumine Moriyasu, The ergodic closing lemma for $C^1$ regular maps, Tokyo J. Math. 15 (1992), no. 1, 171–183. MR 1164194, DOI 10.3836/tjm/1270130259
- Feliks Przytycki, Anosov endomorphisms, Studia Math. 58 (1976), no. 3, 249–285. MR 445555, DOI 10.4064/sm-58-3-249-285
- Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199. MR 240824, DOI 10.2307/2373276
- M. Shub, Topologically transitive diffeomorphisms on $\mathbb {T}^4$, Lect. Notes in Math., 206, Springer, 1971, 39.
- Naoya Sumi, A class of differentiable toral maps which are topologically mixing, Proc. Amer. Math. Soc. 127 (1999), no. 3, 915–924. MR 1469436, DOI 10.1090/S0002-9939-99-04608-0
- Masato Tsujii, Fat solenoidal attractors, Nonlinearity 14 (2001), no. 5, 1011–1027. MR 1862809, DOI 10.1088/0951-7715/14/5/306
- R. F. Williams, The $“\textrm {DA}''$ maps of Smale and structural stability, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 329–334. MR 0264705
Bibliographic Information
- Baolin He
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- Email: hebaolin@pku.edu.cn
- Shaobo Gan
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- Email: gansb@math.pku.edu.cn
- Received by editor(s): August 25, 2011
- Received by editor(s) in revised form: October 23, 2011
- Published electronically: April 5, 2013
- Additional Notes: This work is supported by 973 program 2011CB808002 and NSFC 11025101
- Communicated by: Yingfei Yi
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 2453-2465
- MSC (2010): Primary 37D30
- DOI: https://doi.org/10.1090/S0002-9939-2013-11527-3
- MathSciNet review: 3043026