On a problem of Chen and Liu concerning the prime power factorization of $n!$
HTML articles powered by AMS MathViewer
- by Johannes F. Morgenbesser and Thomas Stoll
- Proc. Amer. Math. Soc. 141 (2013), 2289-2297
- DOI: https://doi.org/10.1090/S0002-9939-2013-11751-X
- Published electronically: March 29, 2013
- PDF | Request permission
Abstract:
For a fixed prime $p$, let $e_p(n!)$ denote the order of $p$ in the prime factorization of $n!$. Chen and Liu (2007) asked whether for any fixed $m$, one has $\{e_p(n^2!) \bmod m:\; n\in \mathbb {Z}\}=\mathbb {Z}_m$ and $\{e_p(q!) \bmod m:\; q \mbox { prime}\}=\mathbb {Z}_m$. We answer these two questions and show asymptotic formulas for $\# \{n<x: n \equiv a \bmod d,\; e_p(n^2!)\equiv r \bmod m\}$ and $\# \{q<x: q \mbox { prime}, q \equiv a \bmod d,\; e_p(q!)\equiv r \bmod m\}$. Furthermore, we show that for each $h\geqslant 3$, we have $\#\{n<x: n \equiv a \bmod d,\; e_p(n^h!)\equiv r \bmod m\} \gg x^{4/(3h+1)}$.References
- Daniel Berend, On the parity of exponents in the factorization of $n!$, J. Number Theory 64 (1997), no. 1, 13–19. MR 1450483, DOI 10.1006/jnth.1997.2106
- D. Berend and G. Kolesnik, Regularity of patterns in the factorization of $n!$, J. Number Theory 124 (2007), no. 1, 181–192. MR 2320999, DOI 10.1016/j.jnt.2006.08.010
- Yong-Gao Chen, On the parity of exponents in the standard factorization of $n!$, J. Number Theory 100 (2003), no. 2, 326–331. MR 1978460, DOI 10.1016/S0022-314X(03)00013-1
- Wei Liu and Yong-Gao Chen, On the exponents modulo 3 in the standard factorisation of $n!$, Bull. Austral. Math. Soc. 73 (2006), no. 3, 329–334. MR 2230643, DOI 10.1017/S000497270003536X
- Yong-Gao Chen and Wei Liu, On the prime power factorization of $n!$. II, J. Number Theory 122 (2007), no. 2, 290–300. MR 2292255, DOI 10.1016/j.jnt.2006.05.016
- Yong-Gao Chen and Yao-Chen Zhu, On the prime power factorization of $n$!, J. Number Theory 82 (2000), no. 1, 1–11. MR 1755150, DOI 10.1006/jnth.1999.2477
- Leonard Eugene Dickson, History of the theory of numbers. Vol. I: Divisibility and primality. , Chelsea Publishing Co., New York, 1966. MR 0245499
- Michael Drmota, Christian Mauduit, and Joël Rivat, The sum-of-digits function of polynomial sequences, J. Lond. Math. Soc. (2) 84 (2011), no. 1, 81–102. MR 2819691, DOI 10.1112/jlms/jdr003
- P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
- A.-M. Legendre, Théorie des nombres, 3e édition, tome 1, Firmin Didot Fréres, Paris, 1830.
- Florian Luca and Pantelimon Stănică, On the prime power factorization of $n$!, J. Number Theory 102 (2003), no. 2, 298–305. MR 1997793, DOI 10.1016/S0022-314X(03)00102-1
- B. Martin, C. Mauduit, J. Rivat, Sur les chiffres des nombres premiers, submitted.
- Christian Mauduit and Joël Rivat, La somme des chiffres des carrés, Acta Math. 203 (2009), no. 1, 107–148 (French). MR 2545827, DOI 10.1007/s11511-009-0040-0
- Christian Mauduit and Joël Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. (2) 171 (2010), no. 3, 1591–1646 (French, with English and French summaries). MR 2680394, DOI 10.4007/annals.2010.171.1591
- J. W. Sander, On the parity of exponents in the prime factorization of factorials, J. Number Theory 90 (2001), no. 2, 316–328. MR 1858081, DOI 10.1006/jnth.2000.2668
- T. Stoll, The sum of digits of polynomial values in arithmetic progressions, Functiones et Approximatio Commentarii Mathematici, accepted (Oct. 21, 2011); preprint available from the author’s webpage.
- Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2nd ed., Cours Spécialisés [Specialized Courses], vol. 1, Société Mathématique de France, Paris, 1995 (French). MR 1366197
- Wenguang Zhai, On the prime power factorization of $n!$, J. Number Theory 129 (2009), no. 8, 1820–1836. MR 2522706, DOI 10.1016/j.jnt.2009.02.016
Bibliographic Information
- Johannes F. Morgenbesser
- Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10, A–1040 Wien, Austria – and – Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 Wien, Austria
- Email: johannes.morgenbesser@tuwien.ac.at
- Thomas Stoll
- Affiliation: Institut de Mathématiques de Luminy, Université d’Aix-Marseille, 13288 Marseille Cedex 9, France
- Email: stoll@iml.univ-mrs.fr
- Received by editor(s): October 21, 2011
- Published electronically: March 29, 2013
- Additional Notes: The first author was supported by the Austrian Science Foundation FWF, grants S9604 and P21209.
This research was supported by the Agence Nationale de la Recherche, grant ANR-10-BLAN 0103 MUNUM - Communicated by: Matthew A. Papanikolas
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 2289-2297
- MSC (2010): Primary 11N25; Secondary 11A63, 11B50, 11L07, 11N37
- DOI: https://doi.org/10.1090/S0002-9939-2013-11751-X
- MathSciNet review: 3043010