CORRIGENDUM TO “CULLEN NUMBERS WITH THE LEHMER PROPERTY”

José María Grau Ribas and Florian Luca

(Communicated by Matthew A. Papanikolas)

Abstract. In this note, we correct an oversight in our paper “Cullen numbers with the Lehmer property”, Proc. Amer. Math. Soc. 140 (2012), 129–134.

There is an error on page 131 of paper [2] justifying that the expression A is nonzero. After the sentence “Also, since m_p divides n_1, it follows that $u \leq w$”, the argument continues in the following way. The case when $\rho = 1$ implies $n_1 = 1$, and this leads to the conclusion that all prime factors of C_n are Fermat primes. This instance has been dealt with on page 131 in [2]. Thus, we may assume that $\rho \geq 3$. The relation $(2^{\alpha \rho^w} + \alpha)u = wn_p$ shows that $u \mid n_p$. Thus,

$$p = m_p2n_p + 1 = \rho^u 2n_p + 1 = X^u + 1,$$

where $X = \rho 2n_p/u$ is an integer. If $u > 1$, the above expression has $X + 1$ as a proper divisor > 1 (because u is odd), which is impossible since p is prime. Thus, $u = 1$. If $w = 1$, we first get that $m_p = n_1 = \rho$ and then that $n_p = \alpha + 2^\alpha \rho = \alpha + n$, so $p = C_n$, which is not allowed. Otherwise, $w \geq 3$, $n_1 = \rho^w$ and $p = \rho 2^{\alpha + n}/w + 1 = (n2^\alpha)^1/w + 1$. We now show that there is at most one prime p with the above property. Indeed, assume that there are two of them, p_1 and p_2, corresponding to $w_1 < w_2$. Thus, $n_1 = \rho_1^{w_1} = \rho_2^{w_2}$, and both w_1 and w_2 divide $n + \alpha$. Let $W = \text{lcm}[w_1, w_2]$. Then $n_1 = \rho_0^W$ for some positive integer ρ_0. Furthermore, writing $W = \omega_1\lambda$, we have that $\lambda > 1$ and $\rho_0^\lambda = \rho_1$. Hence,

$$p_1 = \rho_1 2^{(\alpha + n)/w_1 + 1} = Y^{\lambda} + 1,$$

where $Y = \rho_0 2^{\alpha + n}/W$ is an integer. This is false since $\lambda > 1$ is odd. Therefore the above expression $Y^{\lambda} + 1$ has $Y + 1$ as a proper divisor > 1, contradicting the fact that p_1 is prime. Hence, if A is zero for some p, then p is unique. Further, in this case, $n_1 = \rho^w$ and $p = (n2^\alpha)^1/w + 1 \leq (n2^\alpha)^{1/3} + 1$.

Received by the editors November 2, 2011.

2010 Mathematics Subject Classification. Primary 11A05; Secondary 11A07, 11N25.

©2013 American Mathematical Society

Reverts to public domain 28 years from publication.
The remainder of the argument from [2] shows that the expression A is nonzero for all other primes q of C_n, so all prime factors q of C_n satisfy inequality (5) in [2] with at most one exception, say p, which satisfies the inequality $p \leq (n2^n)^{1/3} + 1$. Hence, instead of the inequality from line 2 of page 132 in [2], we get that

$$C_n < ((n2^n)^{1/3} + 1)2^{6(k-1)(n \log n)^{1/2}},$$

giving

$$2^{6(k-1)(n \log n)^{1/2}} > \frac{n2^n}{(n2^n)^{1/3} + 1} > 2^{2n/3},$$

where the rightmost inequality above holds for all $n \geq 3$. This leads to a slightly worse inequality than inequality (6) in [2], namely,

(1)

$$k > 1 + \frac{n^{1/2}}{9(\log n)^{1/2}}.$$

Note that inequality (6) from [2] still holds whenever $A \neq 0$ for all primes p dividing n, and in particular for all n except maybe when $n_1 = \rho^w$ for some $\rho \geq 3$ and $w \geq 3$. So, from now on, we shall treat only the case when $n_1 = \rho^w$. Comparing estimate (3) in [2] with (1) leads to

(2)

$$\frac{n^{1/2}}{9(\log n)^{1/2}} < 2.4 \log n,$$

which implies that $n < 1.4 \times 10^6$. We now lower the bound in a way similar to the calculation on page 132 in [2]. Namely, first, if $2^{2^\gamma + 1}$ is a Fermat prime factor of C_n, then $\gamma \leq 20$, so $\gamma \in \{0, 1, 2, 3, 4\}$. Furthermore, $\log n / \log 3 \leq 12.9$; therefore $k \leq 5 + 12 = 17$. Now inequality (1) shows that

$$\frac{n^{1/2}}{9(\log n)^{1/2}} < 16,$$

giving $n < 260,000$. But then $\log n / \log 3 \leq 11.4$, giving $k \leq 16$. Also, if n is not a multiple of 3, then the number of prime factors p of C_n with $m_p > 1$ is at most $\log 260,000 / \log 5 < 7.8$. Thus C_n can have at most $5 + 7 = 12$ distinct prime factors, contradicting the result of Cohen and Hagis [1]. Hence, $3 \mid n$ shows that 3 does not divide C_n. Thus, $k \leq 15$, so

$$\frac{n^{1/2}}{9(\log n)^{1/2}} < 14,$$

giving $n < 200,000$. Also, n cannot be divisible by a prime $q \geq 5$, for otherwise, since $n_1 = \rho^w$ for some $w \geq 3$, we would get that the number of prime factors p of C_n with $m_p > 1$ is at most $3 + \log(200,000/q^3) / \log 3 < 9.8$, so $k \leq 9 + 4 = 13$, again contradicting the result of Cohen and Harris. Hence $n = 2^\alpha \cdot 3^\beta$, and the proof finishes as in [2] after formula (7).
ACKNOWLEDGEMENT

The authors thank Dae Jun Kim for pointing out the oversight.

REFERENCES

[1] G. L. Cohen and P. Hagis, On the number of prime factors of \(n \) if \(\phi(n) \mid n - 1 \), *Nieuw Arch. Wisk.* 28 (1980), 177–185. MR582925 (81j:10002)

Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain

E-mail address: grau@uniovi.es

Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México

E-mail address: luca@matmor.unam.mx