THE EISENSTEIN FAMILY

ROBERT F. COLEMAN

(Communicated by Lev Borisov)

Abstract. Based on the work of Buzzard, Kilford, and Roe, we state a general conjecture about the family of overconvergent Eisenstein series.

In [CM98], Mazur and Coleman defined a rigid analytic object called the eigencurve. This object parametrizes finite slope overconvergent normalized \(p \)-adic eigenforms. The Eisenstein family is a family of overconvergent modular forms whose existence was essential for this construction.

The geometry of the eigencurve is still poorly understood. In [BK05], when \(p = 2 \) (a case not actually dealt with in [BK05], but see [Bu07]), it was proven that the 2-adic level one eigencurve at the “boundary of weight space” is a disjoint union of infinitely many annuli. This has been extended to the 3-adic level one eigencurve in [Ro09]. While it might be too optimistic to expect this feature to be possessed by many more eigencurves, we believe results obtained and used in [BK05] and [Ro09] about the domain of analyticity of the Eisenstein family will generalize. In this note, we reformulate these results and state a general conjecture.

1. The family

Let \(q = 4 \) if \(p = 2 \) and \(p \) otherwise. Let \(\mathcal{C}_p \) be the completion of an algebraic closure of \(\mathbb{Q}_p \), \(\mathcal{R}_p \) the ring of integers of \(\mathcal{C}_p \) and \(\mathcal{F} \) the residue field of \(\mathcal{R}_p \). Let \(\mathcal{W} \subset \mathcal{R}_p \) denote the Witt vectors of \(\mathcal{F} \). Also let \(v \) denote the valuation on \(\mathcal{C}_p^* \) such that \(v(p) = 1 \). Let \(Z \) be the connected component of the ordinary locus of \(X_1(q) \) containing the cusp \(\infty \). Let \(\mathcal{W} \) be the analytic group of continuous \(\mathcal{C}_p \)-valued characters on \(\mathcal{Z}_p^* \) and \(\mathcal{B} \) the subgroup of characters trivial on \(\mu(q) \). Let \(\Lambda = \mathcal{Z}_p[[\mathcal{Z}_p^*]], \Lambda = \mathcal{Z}_p[[1 + q\mathcal{Z}_p^*]] \subset \Lambda \), and for \(a \in \mathcal{Z}_p^* \), let \([a]\) denote its image in \(\Lambda \).

If \(\kappa \in \mathcal{W} \) and \(\alpha = r_1[a_1] + \cdots + r_n[a_n] \in \mathcal{Z}_p[\mathcal{Z}_p^*] \), let

\[\kappa(\alpha) = \sum_{i=1}^{n} r_i \kappa(a_i). \]

This extends to a continuous homomorphism \(\Lambda \to \mathcal{R}_p \) and induces a homomorphism

\[\kappa: \Lambda[[q]] \to \mathcal{R}_p[[q]]. \]

Let \(w_p \) be the function on \(\mathcal{W} \), \(\kappa \mapsto \kappa([1 + q] - 1) \).
Let \(E(q) \in \Lambda[[q]] \) be such that
\[
\kappa(E(q)) = 1 + \frac{2}{\zeta^*(\kappa)} \sum_{n \geq 1} \sigma_n(\kappa) q^n,
\]
for \(\kappa \in \mathcal{B}\setminus\{1\} \), where \(\zeta^* \) is the \(p \)-adic zeta function on \(W \) (see Chapter 4, §3, of [La78]) and
\[
\sigma_n(\kappa) = \sum_{d|n} \kappa(d)/d.
\]
If \(F(q) = \sum_{n \geq 0} a_n q^n \) is a series in \(q \), we set \(V(F)(q) = \sum_{n \geq 0} a_n q^{pn} \). By Corollary 2.1.1 of [Co97ii], there is an element \(\mathcal{E}_p \in A^1(\mathbb{Z}/\mathbb{B})^p \), the ring of rigid analytic functions bounded by one on \(\mathbb{Z}/\mathbb{B} := \mathbb{Z} \times \mathcal{B} \) overconvergent over \(\mathcal{B} \), whose \(q \)-expansion, \(\mathcal{E}_p(q) \), is \(E(q)/V(E)(q) \).

Let \(H \) denote the level one, weight \(p-1 \), Hasse invariant modular form over \(F_p \).

If \(E \) is an elliptic curve over \(\mathbb{R}_p \), let
\[
h(E) = \begin{cases} 0 & \text{if } H(\tilde{E}, \tilde{\omega}) \neq 0, A \in \mathbb{R}_p \text{ and } H(\tilde{E}, \tilde{\omega}) = A \bmod p, \\ 1 & \text{if } H(\tilde{E}, \tilde{\omega}) = 0, \end{cases}
\]
where \(\omega \) generates \(\Omega_{E/\mathbb{R}_p} \), \(\tilde{E} \) is \(E \bmod p \) and \(\tilde{\omega} \) is \(\omega \bmod p \). (This is independent of the choice of \(\omega \).) If \(P \in X_1(N)(\mathbb{C}_p) \), let \((h(P), A(P)) = (h(E), |\text{Aut}(E)|)/2 \) if \(P \) corresponds to an elliptic curve \(E \) with good reduction, \(\tilde{E} \), and \((h(P), A(P)) = (0, 1) \) otherwise.

If \(r \in \mathbb{R}_{>0} \), let \(\mathcal{B}_r \) be the annulus \(\{ \kappa \in \mathcal{B} : v(w_p(\kappa)) < r \} \).

Conjecture 1.1. (a) The restriction of \(\mathcal{E}_p \) to \(\mathbb{Z}_p := \mathbb{Z} \times \mathcal{B}_c_p \), where \(c_p = 3 \) if \(p = 2 \) and 1 otherwise, analytically continues to a function whose absolute value is bounded by 1 on the rigid connected component \(\mathcal{V}_p \) of
\[
\{(P, \kappa) \in X_1(q) \times \mathcal{B} : h(P) < \frac{p}{p+1}, A(P) \cdot h(P) < v(w_p(\kappa)) < c_p\}
\]
containing \(\mathbb{Z}_p \).

(b) Moreover, if \(\kappa \in \mathcal{B}_c_p \), the restriction of this function to \(\mathcal{V}_p|_{\kappa} \subset X_1(q) \) does not analytically continue to any larger connected region in \(X_1(q) \).

Theorem 1.2. Conjecture 1.1 is true if \(p \) equals 2 or 3.

Proof. We will use the notation \(E_{i,j} \) for the Eisenstein series of §B1 of [Co97ii].

We first prove (a). Suppose \(p = 2 \). If \(P \in X_1(4) = X_0(4) \), \(A(P) = 12 \) if \(P \) corresponds to an elliptic curve with good supersingular reduction and 1 otherwise.

3 This, in fact, can be deduced more directly using the arguments which established Corollary 4.1.2 of [Co97]. The point is, the function labeled there, \(e^* \), naturally extends to
\[
\mathcal{B} \times \bigcup_{v \in \mathcal{I}_2} X(v).
\]

4 We use the definition on page 97 of [Ka73].

5 \(\mathcal{B}_c_p \) (for all \(p \)) is the largest annulus of the form \(\mathcal{B}_r \) containing no points corresponding to classical level 1 forms.
Let y_2 be the function on $X_1(4)$,
$$y_2 = \frac{E(2,0)/V(E(2,0)) - 1}{24}.$$

As explained in [BK05], y_2 yields an isomorphism $X_1(4) \to \mathbb{P}^1$. By Theorem 7 and a remark on page 613 (the end of the proof) of [BK05],

(1) $$\mathcal{E}_2 \in \mathbb{Z}_2[[w_2/8, 8y_2]] \cap \mathbb{Z}_2[[w_2, y_2]].$$

In other words,

$$\mathcal{E}_2 = \sum_{j \geq 0} \left(\sum_{i<j} b_{ij} \left(\frac{8}{w_2} \right)^{j-i} + \sum_{i \geq j} b_{ij} w_2^{i-j} \right) (w_2 y_2)^j,$$

where $b_{ij} \in \mathbb{Z}_2$. So \mathcal{E}_2 continues to and is bounded by one on the connected component D_2 of

$$(\{(P, \kappa) \in X_1(4) \times \mathcal{B}: -v(y_2(P)) < v(w_2(\kappa)) < 3\})$$

containing Z_2.

By Lemma 2 (iii) of [BK05], if $F_2 = V(\Delta)/\Delta$, which is a modular function of level 2 that yields an isomorphism $X_0(2) = X_1(2) \to \mathbb{P}^1$, then

(2) $$F_2 = \frac{y_2(1 + 8y_2)}{(1 - 8y_2)^2}.$$

Thus if $v(y_2) > -3$, $|F_2/y_2 - 1| < 1$.

One can show that

(3) $$\frac{(2^8 F_2 + 1)^3}{F_2} = j.$$

Now,

(4) $$v(j(E)) = 12h(E)$$

if $12 > v(j(E)) \geq 0$, by Theorem 2.2. So if $v(y_2) > -3$, then $v(F_2) > -3$ and

$$v(F_2) = -12h.$$

This implies D_2 is contained in \mathcal{V}_2.

If m and n are positive integers, let $\pi(mn, n) : X_1(mn) \to X_1(n)$ be the “forgetful map”. The image of \mathcal{V}_2 in $X_1(2)$ is contained in the connected component C of $\pi(2,1)^{-1}\{x \in X(1): v(j(x)) < 3\}$ containing the cusp ∞ by (4). Also, from (3), we see that $v(F_2) > -3$ on C. Using (2), we see that $v(y_2) > -3$ on the connected component of $\pi(2,2)^{-1}C$ containing the cusp $\infty \in X_1(4)$. Thus $\mathcal{V}_2 = D_2$.

Now, suppose $p = 3$. Let

$$y_3 = \frac{E(1,0)/V(E(1,0)) - 1}{6}.$$

Then y_3 is a level 9 modular function giving an isomorphism $X_0(9) \to \mathbb{P}^1$. By Theorem 4.2 and the proof of Corollary 4.3 of [Ro09],

$$\mathcal{E}_3 \in \mathbb{Z}_3[[w_3/3, 3y_3]] \cap \mathbb{Z}_3[[w_3, y_3]].$$
By Lemma 2.4(3) of [Ro09], if $F_3 = \sqrt{V(\Delta)/\Delta}$ (a level 3 modular function yielding $X_1(3) = X_0(3) \cong \mathbb{P}^1$), then

$$F_3 = \frac{y_3(1 + 3y_3 + 9y_3^2)}{(1 - 3y_3)^2}.$$

Thus, if $v(y_3) > -1$, then $|F_3/y_3 - 1| < 1$.

As McMurdy pointed out, $j = \frac{(1 + 27F_3)(1 + 243F_3)^3}{F_3}$.

If $v(F_3) > -3$, then $v(F_3) = -v(j)$. Also, using Theorem 222 if $v(y_3) > -1$, we see that $v(y_3) = v(F_3) = -v(j) = -6h$. We can now argue as above to show E_3 extends to and is bounded by one on V_3. This proves (a).

To establish the rest of the theorem we will use

Lemma 1.3. If f is an analytic function on the open unit disk $B(0,1)$ and f analytically continues to a strictly larger connected rigid subspace of the closed unit disk B^1, then there exists an open affine U in \mathbb{A}_k^1 containing 0 and an analytic function F on the affinoid $Y = \text{red}^{-1}U$ such that $F|_{B(0,1)} = f$. Moreover, if $||f||_{B(0,1)} \leq 1$, then $||F||_Y \leq 1$ and $\mathbb{A}^o(Y) = \mathcal{O}_{\mathbb{A}_k^1}(U)$.

Proof. This follows from the fact that any connected affinoid in B^1 which properly intersects $B(0,1)$ must contain the complement of finitely many residue disks. □

Suppose $p = 2$ and suppose $\kappa \in B$ and $v(w_2(\kappa)) < 3$. Then the fiber above κ of V_2 is isomorphic to $B(0,1)$ and we may regard $X =: X_\kappa = w_2(\kappa)y_2$ as a uniformizing parameter on it. Thus, as pointed out on page 614 of [BK05], there is a $g_\kappa(z) \in \mathcal{O}_\kappa[[z]]$ such that, after pullback, the restriction of E_2 to this fiber equals $g_\kappa(w_2(\kappa)y_2)$.

It follows that if we take $f = Xg_\kappa(X)$ and f extends to an analytic function on a larger connected region in the fiber above κ of $X_1(4) \times B_3$ than V_2/κ, then there must be an open affine U in \mathbb{A}_k^1 containing 0 and an analytic function F on $Y = \text{red}^{-1}U$ such that $F|_{B(0,1)} = f$. Then F must be a rational function in X. It follows from the analysis on page 614 of [BK05] that

$$F(X)^2 + F(X) + X = 0.$$

But, this means F is integral over $\mathbb{F}[X]$, which implies $F \in \mathbb{F}[X]$, but there are no solutions of (5) in $\mathbb{F}[X]$. This implies E_2 does not continue to a larger connected region in the fiber above κ.

Now suppose $p = 3$ and $\kappa \in B$. Then if $v(w_3(\kappa(4))) < 1$, by §5 of [Ro09] there is a $g_\kappa(z) \in \mathcal{O}_\kappa[[z]]$ such that the restriction of E_3 to the fiber above κ equals $g_\kappa(w_3(\kappa)y_3)$. By the proof of Lemma 5.1 of [Ro09], if $G(X) = X^2g_\kappa(X)$, then

$$G(X)^3 + G(X)^2 + XG(X) - X^3 = 0.$$

This has no solution in $\mathbb{F}[X]$, so as above E_3 does not continue to a larger connected region in the fiber above κ. This completes the proof of (b).
2. Valuation of Hasse

We use the notation and formulas of [DT75]. Suppose \(R \) is a ring, \(p = 0 \) in \(R \) and \(a_1, \ldots, a_6 \in R \). Let

\[
E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,
\]

\[
\pi = dx/(2y + a_1 x + a_3) = dy/(3x^2 + 2a_2 x + a_4 - a_1 y),
\]

\[
b_2 = a_1^2 + 4a_2, \quad -4b_8 = b_1^2 - b_2 b_6, \quad c_4 = b_2^2 - 24 b_4 \quad \text{and} \quad \Delta = b_2^3 - 27 b_6^2 + b_8(36b_4 - b_6^2).\]

Suppose \(\Delta \in R^* \). Then \(E \) is an elliptic curve over \(R \).[4] \(\pi \) is a non-vanishing differential and

\[
(6) \quad j(E) = c_4^3/\Delta.
\]

The following lemma should be well known (it follows easily from the definition).

Lemma 2.1. We have \(H(E, \pi) = a_1 \) if \(p = 2 \), and \(H(E, \pi) = b_2 \) if \(p = 3 \).

Theorem 2.2. Suppose \(P \) is a point on the \(j \)-line \(X(1) \) over \(\mathbb{R}_p \) corresponding to an elliptic curve \(E_P \) with good supersingular reduction and \(P_0 \in X(1)(\mathbb{W}) \) such that \(P_0 = P \) and \(j(P_0) = 0 \) if \(p \leq 3 \) or \(E_{p-1}(P_0) = 0 \) if \(p > 3 \). Then

\[
h(E_P) = \frac{v(j(P) - j(P_0))}{|\text{Aut}(E_P)|/2}
\]

if either expression is strictly less than one.

Proof. When \(p = 2 \) or 3, this follows from (6), Theorem 10.1 of chapter III of [Si86] (which implies \(|\text{Aut}(E_P)|/2 = 12 \) if \(p = 2 \) and 6 if \(p = 3 \)) and Lemma 2.1. When \(p > 3 \),

\[
H = E_{p-1} \bmod p,
\]

by §2.1 of [Ka73]. Suppose \(N \geq 3 \), \((N, p) = 1 \), and let \(E(N) \) denote the universal elliptic curve over \(Y(N) \) (the open modular curve of level \(N \)) and \(G = \Gamma(1)/\Gamma(N) \). Let \(f: Y(N) \to Y(1) \) be the natural map. Then \(G \) acts on \((E(N), Y(N)) \) and hence on \(\omega = f_* \Omega^1_E|_{E(1)} \). Now \(E_{p-1} \) may be considered a \(G \)-invariant section of \(\omega^{p-1} \). Let \(U \subset Y(1) \) be the residue disk of \(\bar{P} \) and \(V \) one of the residue classes (which are disks over \(\mathbb{W} \)) above \(f^{-1}(\bar{P}) \). Then \(f: V \to U \) is finite, surjective and of degree \(d := |\text{Aut}(E_P)|/2 \). Moreover, if \(d > 1 \), \(U \) will contain a point \(R \) with \(j(R) \) equal to 0 or 1728 and \(f|_U \) is totally ramified at the unique point \(Q \) above \(R \). As is well-known, \(E_{p-1}(R) = 0 \) (as \(P \) is supersingular)[6] so \(R = P_0 \). If \(\eta \) is a basis for \(\omega(V) \) on the formal scheme attached to \(V \), then \(E_{p-1}|_U = s \eta^{p-1} \), where \(s: V \to B(0, 1) \) is an isomorphism which vanishes at \(Q \). Moreover,

\[
f^*_U(j|_U) = j(P_0) + s^d g, \quad \text{where} \quad g \in A^0(V)^*.
\]

Now, suppose \(A \in V(R_p) \) and \(f(A) = P \). Then

\[
j(P) - j(P_0) = s(A)^d g(A).
\]

6If \(p > 2 \), \(E \) also has the equation \(y^2 = 4x^3 + b_2 x^2 + 2b_4 x + b_6 \). (See chapter III, §1, of [Si86].)
7It is known that if \(p > 3 \), then \(E_{p-1} \) has unique zero in each supersingular disk.
8If \(\tau \) is in the upper half-plane, \(E_k(\tau) = \frac{1}{2} \sum_{(a, b)=1} (a \tau + b)^{-k} \), so if \(\tau \) is a quadratic root of unity, then \(\tau^{-k} E_k(\tau) = E_k(\tau) \).
Since \(v(g(A)) = 0 \),
\[
v(j(P) - j(P_0)) = dv(s(A)) = (|\Aut(\tilde{E}_P)|/2) \cdot h(E_P)
\]
if \(v(j(P) - j(P_0))/(|\Aut(E_P)|/2) \) or \(h(E_P) \) is strictly less than one.

Remarks 1. (i) One can show that \(h(E) = v(E) \), where \(v(E) \) is as defined on page 36 of [Bu03] when \(v(E) < p/(p+1) \).

(ii) Proposition 1 of [BC06] follows from Theorem 2.2.

References

Department of Mathematics, University of California, Berkeley, California 94720-3840

E-mail address: coleman@math.berkeley.edu