Local and global well-posedness for the critical Schrödinger-Debye system
HTML articles powered by AMS MathViewer
- by Adán J. Corcho, Filipe Oliveira and Jorge Drumond Silva PDF
- Proc. Amer. Math. Soc. 141 (2013), 3485-3499 Request permission
Abstract:
We establish local well-posedness results for the Initial Value Problem associated to the Schrödinger-Debye system in dimensions $N=2, 3$ for data in $H^s\times H^{\ell }$, with $s$ and $\ell$ satisfying $\max \{0, s-1\} \le \ell \le \min \{2s, s+1\}$. In particular, these include the energy space $H^1\times L^2$. Our results improve the previous ones obtained by B. Bidégaray, and by A. J. Corcho and F. Linares. Moreover, in the critical case ($N=2$) and for initial data in $H^1\times L^2$, we prove that solutions exist for all times, thus providing a negative answer to the open problem mentioned by G. Fibich and G. C. Papanicolau concerning the formation of singularities for these solutions.References
- Christophe Besse and Brigitte Bidégaray, Numerical study of self-focusing solutions to the Schrödinger-Debye system, M2AN Math. Model. Numer. Anal. 35 (2001), no. 1, 35–55 (English, with English and French summaries). MR 1811980, DOI 10.1051/m2an:2001106
- Brigitte Bidégaray, On the Cauchy problem for some systems occurring in nonlinear optics, Adv. Differential Equations 3 (1998), no. 3, 473–496. MR 1751953
- Brigitte Bidégaray, The Cauchy problem for Schrödinger-Debye equations, Math. Models Methods Appl. Sci. 10 (2000), no. 3, 307–315. MR 1753113, DOI 10.1142/S0218202500000185
- Thierry Cazenave and Fred B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987) Lecture Notes in Math., vol. 1394, Springer, Berlin, 1989, pp. 18–29. MR 1021011, DOI 10.1007/BFb0086749
- Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. 14 (1990), no. 10, 807–836. MR 1055532, DOI 10.1016/0362-546X(90)90023-A
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Differential Equations (2001), No. 26, 7. MR 1824796
- James Colliander and Tristan Roy, Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on $\Bbb R^2$, Commun. Pure Appl. Anal. 10 (2011), no. 2, 397–414. MR 2754279, DOI 10.3934/cpaa.2011.10.397
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\Bbb R^3$, Comm. Pure Appl. Math. 57 (2004), no. 8, 987–1014. MR 2053757, DOI 10.1002/cpa.20029
- A. J. Corcho and F. Linares, Well-posedness for the Schrödinger-Debye equation, Partial differential equations and inverse problems, Contemp. Math., vol. 362, Amer. Math. Soc., Providence, RI, 2004, pp. 113–131. MR 2091494, DOI 10.1090/conm/362/06608
- Adán J. Corcho and Carlos Matheus, Sharp bilinear estimates and well posedness for the 1-D Schrödinger-Debye system, Differential Integral Equations 22 (2009), no. 3-4, 357–391. MR 2492826
- Gadi Fibich and George Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension, SIAM J. Appl. Math. 60 (2000), no. 1, 183–240. MR 1740841, DOI 10.1137/S0036139997322407
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis 32 (1979), no. 1, 1–32. MR 533218, DOI 10.1016/0022-1236(79)90076-4
- J. Ginibre, Y. Tsutsumi, and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), no. 2, 384–436. MR 1491547, DOI 10.1006/jfan.1997.3148
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 10 (1993), no. 3, 255–288 (English, with English and French summaries). MR 1230709, DOI 10.1016/S0294-1449(16)30213-X
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620. MR 1211741, DOI 10.1002/cpa.3160460405
- Alan C. Newell and Jerome V. Moloney, Nonlinear optics, Advanced Topics in the Interdisciplinary Mathematical Sciences, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1992. MR 1163192
- Yoshio Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), no. 1, 115–125. MR 915266
Additional Information
- Adán J. Corcho
- Affiliation: Instituto de Matemática, Universidade Federal do Rio de Janeiro-UFRJ, Ilha do Fundão, 21945-970, Rio de Janeiro-RJ, Brazil
- Email: adan@im.ufrj.br
- Filipe Oliveira
- Affiliation: Centro de Matemática e Aplicações, FCT-UNL, Monte da Caparica, Portugal
- Email: fso@fct.unl.pt
- Jorge Drumond Silva
- Affiliation: Center for Mathematical Analysis, Geometry and Dynamical Systems, Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
- Email: jsilva@math.ist.utl.pt
- Received by editor(s): February 14, 2011
- Received by editor(s) in revised form: December 15, 2011
- Published electronically: June 18, 2013
- Additional Notes: The first author was supported by CAPES and CNPq (Edital Universal-482129/2009-3), Brazil
The second author was partially supported by FCT/Portugal through Financiamento Base 2008-ISFL-1-297
The third author was partially supported by the Center for Mathematical Analysis, Geometry and Dynamical Systems through the Fundação para a Ciência e Tecnologia (FCT/Portugal) program POCTI/FEDER - Communicated by: James E. Colliander
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 3485-3499
- MSC (2010): Primary 35Q55, 35Q60; Secondary 35B65
- DOI: https://doi.org/10.1090/S0002-9939-2013-11612-6
- MathSciNet review: 3080171