On the embedding of the attractor generated by Navier-Stokes equations into finite dimensional spaces
HTML articles powered by AMS MathViewer
- by Mahdi Mohebbi
- Proc. Amer. Math. Soc. 141 (2013), 3453-3465
- DOI: https://doi.org/10.1090/S0002-9939-2013-11618-7
- Published electronically: June 10, 2013
- PDF | Request permission
Abstract:
For 2-D Navier-Stokes equations on a $C^2$ bounded domain $\Omega$, a class of nonlinear homeomorphisms is constructed from the attractor of Navier-Stokes to curves in $\mathbb {R}^N$ for sufficiently large $N$. The construction uses an $\varepsilon$-net on $\Omega$ (so does not use the information “near” the boundary) and is more physically perceivable compared to abstract common embeddings.References
- A. Ben-Artzi, A. Eden, C. Foias, and B. Nicolaenko, Hölder continuity for the inverse of Mañé’s projection, J. Math. Anal. Appl. 178 (1993), no. 1, 22–29. MR 1231724, DOI 10.1006/jmaa.1993.1288
- Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. MR 972259, DOI 10.7208/chicago/9780226764320.001.0001
- A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential attractors for dissipative evolution equations, RAM: Research in Applied Mathematics, vol. 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. MR 1335230
- C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana Univ. Math. J. 45 (1996), no. 3, 603–616. MR 1422098, DOI 10.1512/iumj.1996.45.1326
- C. Foiaş and G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$, Rend. Sem. Mat. Univ. Padova 39 (1967), 1–34 (French). MR 223716
- Ciprian Foias and Roger Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comp. 43 (1984), no. 167, 117–133. MR 744927, DOI 10.1090/S0025-5718-1984-0744927-9
- Peter K. Friz, Igor Kukavica, and James C. Robinson, Nodal parametrisation of analytic attractors, Discrete Contin. Dynam. Systems 7 (2001), no. 3, 643–657. MR 1815771, DOI 10.3934/dcds.2001.7.643
- Peter K. Friz and James C. Robinson, Parametrising the attractor of the two-dimensional Navier-Stokes equations with a finite number of nodal values, Phys. D 148 (2001), no. 3-4, 201–220. MR 1820361, DOI 10.1016/S0167-2789(00)00179-2
- Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. II, Springer Tracts in Natural Philosophy, vol. 39, Springer-Verlag, New York, 1994. Nonlinear steady problems. MR 1284206, DOI 10.1007/978-1-4612-5364-8
- Giovanni P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, Fundamental directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2000, pp. 1–70. MR 1798753
- Giovanni P. Galdi and Salvatore Rionero, A priori estimates, continuous dependence and stability for solutions to Navier-Stokes equations on exterior domains. 2, Riv. Mat. Univ. Parma (4) 5 (1979), no. part, 533–556 (1980). MR 584228
- Eberhard Hopf, A mathematical example displaying features of turbulence, Communications on Appl. Math. 1 (1948), 303–322. MR 30113, DOI 10.1002/cpa.3160010401
- Brian R. Hunt and Vadim Yu. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity 12 (1999), no. 5, 1263–1275. MR 1710097, DOI 10.1088/0951-7715/12/5/303
- R. J. Knops and L. E. Payne, On the stability of solutions of the Navier-Stokes equations backward in time, Arch. Rational Mech. Anal. 29 (1968), 331–335. MR 226222, DOI 10.1007/BF00283897
- O. A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equations, Journal of Mathematical Sciences 3 (1975), 458–479.
- Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 230–242. MR 654892
- James C. Robinson, Infinite-dimensional dynamical systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. An introduction to dissipative parabolic PDEs and the theory of global attractors. MR 1881888, DOI 10.1007/978-94-010-0732-0
- —, Attractors and finite-dimensional behaviour in the Navier-Stokes equations, Instructional conference on mathematical analysis of hydrodynamics (Edinburgh), ICMS, June 2003.
- James C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems, Nonlinearity 18 (2005), no. 5, 2135–2143. MR 2164735, DOI 10.1088/0951-7715/18/5/013
- Roger Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR 0609732
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. MR 1441312, DOI 10.1007/978-1-4612-0645-3
Bibliographic Information
- Mahdi Mohebbi
- Affiliation: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- MR Author ID: 1029609
- Email: mam175@pitt.edu
- Received by editor(s): May 24, 2011
- Received by editor(s) in revised form: October 3, 2011, and December 8, 2011
- Published electronically: June 10, 2013
- Additional Notes: This work was partially supported by NSF grant DMS-1062381.
- Communicated by: Walter Craig
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 3453-3465
- MSC (2010): Primary 37L30; Secondary 54C25
- DOI: https://doi.org/10.1090/S0002-9939-2013-11618-7
- MathSciNet review: 3080168