Recurrent and periodic points in dendritic Julia sets
HTML articles powered by AMS MathViewer
- by Alexander Blokh
- Proc. Amer. Math. Soc. 141 (2013), 3587-3599
- DOI: https://doi.org/10.1090/S0002-9939-2013-11633-3
- Published electronically: July 1, 2013
- PDF | Request permission
Abstract:
We relate periodic and recurrent points in dendritic Julia sets. This generalizes well-known results for interval dynamics.References
- Gerardo Acosta, Peyman Eslami, and Lex G. Oversteegen, On open maps between dendrites, Houston J. Math. 33 (2007), no. 3, 753–770. MR 2335734
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Combinatorial dynamics and entropy in dimension one, 2nd ed., Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1807264, DOI 10.1142/4205
- A. M. Blokh, Rotation numbers, twists and a Sharkovskiĭ-Misiurewicz-type ordering for patterns on the interval, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 1–14. MR 1314966, DOI 10.1017/S014338570000821X
- Alexander M. Blokh, The “spectral” decomposition for one-dimensional maps, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 4, Springer, Berlin, 1995, pp. 1–59. MR 1346496
- A. M. Blokh, Dynamical systems on one-dimensional branched manifolds. I, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 46 (1986), 8–18 (Russian); English transl., J. Soviet Math. 48 (1990), no. 5, 500–508. MR 865783, DOI 10.1007/BF01095616
- A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen, E. Tymchatyn, Fixed point theorems for plane continua with applications, preprint arXiv:1004.0214, 107 pages (2010), to appear in Memoirs of the Amer. Math. Soc.
- A. Blokh and G. Levin, An inequality for laminations, Julia sets and “growing trees”, Ergodic Theory Dynam. Systems 22 (2002), no. 1, 63–97. MR 1889565, DOI 10.1017/S0143385702000032
- Alexander Blokh and MichałMisiurewicz, New order for periodic orbits of interval maps, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 565–574. MR 1452180, DOI 10.1017/S0143385797084927
- A. Blokh, L. Oversteegen, R. Ptacek, V. Timorin, Dynamical cores of topological polynomials, to appear in Proceedings of the Conference “Frontiers in Complex Dynamics (celebrating John Milnor’s 80th birthday)”, arXiv:1106.5022.
- Piotr Minc and W. R. R. Transue, Sarkovskiĭ’s theorem for hereditarily decomposable chainable continua, Trans. Amer. Math. Soc. 315 (1989), no. 1, 173–188. MR 965302, DOI 10.1090/S0002-9947-1989-0965302-9
- Zbigniew Nitecki, Periodic and limit orbits and the depth of the center for piecewise monotone interval maps, Proc. Amer. Math. Soc. 80 (1980), no. 3, 511–514. MR 581016, DOI 10.1090/S0002-9939-1980-0581016-9
- H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Math. 13 (1890), 1–270.
- O. M. Šarkovs′kiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Ž. 16 (1964), 61–71 (Russian, with English summary). MR 0159905
- A. N. Sharkovskiy, Non-wandering points and the center of a continuous map of the line into itself (in Ukrainian), Dop. Acad. Nauk Ukr. RSR, Ser. A (1964), 865–868.
- A. N. Šarkovskiĭ, The behavior of the transformation in the neighborhood of an attracting set, Ukrain. Mat. Ž. 18 (1966), no. 2, 60–83 (Russian). MR 0212784
- A. N. Sharkovskiy, The partially ordered system of attracting sets, Soviet Math. Dokl., 7 (1966), 1384–1386.
- A. N. Sharkovskiy, On a theorem of G. D. Birkhoff (in Russian), Dop. Acad. Nauk Ukr. RSR, Ser. A (1967), 429–432.
- A. N. Šarkovskiĭ, Attracting sets containing no cycles, Ukrain. Mat. Ž. 20 (1968), no. 1, 136–142 (Russian). MR 0225314
- William P. Thurston, On the geometry and dynamics of iterated rational maps, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 3–137. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. MR 2508255, DOI 10.1201/b10617-3
Bibliographic Information
- Alexander Blokh
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
- MR Author ID: 196866
- Email: ablokh@math.uab.edu
- Received by editor(s): August 26, 2011
- Received by editor(s) in revised form: December 16, 2011, and January 5, 2012
- Published electronically: July 1, 2013
- Additional Notes: The author was partially supported by NSF grant DMS–0901038
- Communicated by: Bryna Kra
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 3587-3599
- MSC (2010): Primary 37B45; Secondary 37C25, 37E05, 37E25, 37F10, 37F50
- DOI: https://doi.org/10.1090/S0002-9939-2013-11633-3
- MathSciNet review: 3080181
Dedicated: Dedicated to A. N. Sharkovskiy on the occasion of his 75th birthday