On hyperbolicity and tautness modulo an analytic subset of Hartogs domains
HTML articles powered by AMS MathViewer
- by Do Duc Thai, Pascal J. Thomas, Nguyen Van Trao and Mai Anh Duc
- Proc. Amer. Math. Soc. 141 (2013), 3623-3631
- DOI: https://doi.org/10.1090/S0002-9939-2013-11645-X
- Published electronically: July 9, 2013
- PDF | Request permission
Abstract:
Let $X$ be a complex space and $H$ a positive homogeneous plurisubharmonic function $H$ on $X\times \mathbb {C}^m$. Consider the Hartogs-type domain $\Omega _{H}(X):=\{(z,w)\in X\times \mathbb {C}^m:H(z,w)<1 \}$. Let $S$ be an analytic subset of $X$. We give necessary and sufficient conditions for hyperbolicity and tautness modulo $S\times \mathbb {C}^m$ of $\Omega _{H}(X)$, with the obvious corollaries for the special case of Hartogs domains.References
- Yukinobu Adachi, On a Kobayashi hyperbolic manifold $N$ modulo a closed subset $\Delta _N$ and its applications, Kodai Math. J. 30 (2007), no. 1, 131–139. MR 2319082, DOI 10.2996/kmj/1175287627
- Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, DOI 10.1007/s002220050141
- B. Drinovec Drnovšek, F. Forstnerič, Disc functionals and Siciak-Zaharyuta extremal functions on singular varieties, arXiv:1109.3947, to appear in Ann. Polon. Math.
- Nguyen Quang Dieu and Do Duc Thai, Complete hyperbolicity of Hartogs domain, Manuscripta Math. 112 (2003), no. 2, 171–181. MR 2064914, DOI 10.1007/s00229-003-0388-y
- Alan Eastwood, A propos des variétés hyperboliques complètes, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), A1071–A1074 (French). MR 414941
- John Erik Fornæss and Raghavan Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), no. 1, 47–72. MR 569410, DOI 10.1007/BF01349254
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Heisuke Hironaka, Desingularization of complex-analytic varieties, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 627–631 (French). MR 0425170
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. MR 1635983, DOI 10.1007/978-3-662-03582-5
- Reinhold Remmert, Classical topics in complex function theory, Graduate Texts in Mathematics, vol. 172, Springer-Verlag, New York, 1998. Translated from the German by Leslie Kay. MR 1483074, DOI 10.1007/978-1-4757-2956-6
- Nessim Sibony, A class of hyperbolic manifolds, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 357–372. MR 627768
- Do Duc Thai and Pascal J. Thomas, $\textbf {D}^*$-extension property without hyperbolicity, Indiana Univ. Math. J. 47 (1998), no. 3, 1125–1130. MR 1665757, DOI 10.1512/iumj.1998.47.1484
- Do Duc Thai and Pham Viet Duc, On the complete hyperbolicity and the tautness of the Hartogs domains, Internat. J. Math. 11 (2000), no. 1, 103–111. MR 1757893, DOI 10.1142/S0129167X00000076
- Nguyen Van Trao and Tran Hue Minh, Remarks on the Kobayashi hyperbolicity of complex spaces, Acta Math. Vietnam. 34 (2009), no. 3, 375–387. MR 2583947
Bibliographic Information
- Do Duc Thai
- Affiliation: Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy str., Hanoi, Vietnam
- Email: ducthai.do@gmail.com
- Pascal J. Thomas
- Affiliation: Université de Toulouse, UPS, INSA, UT1, UTM, Institut de Mathématiques de Toulouse, F-31062 Toulouse, France
- MR Author ID: 238303
- Email: pascal.thomas@math.univ-toulouse.fr
- Nguyen Van Trao
- Affiliation: Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy str., Hanoi, Vietnam
- Email: ngvtrao@yahoo.com
- Mai Anh Duc
- Affiliation: Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy str., Hanoi, Vietnam
- Email: ducphuongma@gmail.com
- Received by editor(s): December 18, 2011
- Received by editor(s) in revised form: January 6, 2012
- Published electronically: July 9, 2013
- Additional Notes: The research of the authors was supported by an NAFOSTED grant of Vietnam and by an ARCUS cooperation program with the support of the Régions Ile-de-France and Midi-Pyrénées
- Communicated by: Franc Forstneric
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 3623-3631
- MSC (2010): Primary 32F45; Secondary 32C25, 32H25, 32Q45
- DOI: https://doi.org/10.1090/S0002-9939-2013-11645-X
- MathSciNet review: 3080184