Finite propagation speed for first order systems and Huygens’ principle for hyperbolic equations
HTML articles powered by AMS MathViewer
- by Alan McIntosh and Andrew J. Morris
- Proc. Amer. Math. Soc. 141 (2013), 3515-3527
- DOI: https://doi.org/10.1090/S0002-9939-2013-11661-8
- Published electronically: June 25, 2013
- PDF | Request permission
Abstract:
We prove that strongly continuous groups generated by first order systems on Riemannian manifolds have finite propagation speed. Our procedure provides a new direct proof for self-adjoint systems and allows an extension to operators on metric measure spaces. As an application, we present a new approach to the weak Huygens’ principle for second order hyperbolic equations.References
- Wolfgang Arendt and Charles J. K. Batty, Forms, functional calculus, cosine functions and perturbation, Perspectives in operator theory, Banach Center Publ., vol. 75, Polish Acad. Sci. Inst. Math., Warsaw, 2007, pp. 17–38. MR 2336709, DOI 10.4064/bc75-0-2
- Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588, DOI 10.1007/978-3-0348-5075-9
- Pascal Auscher, Andreas Axelsson, and Alan McIntosh, On a quadratic estimate related to the Kato conjecture and boundary value problems, Harmonic analysis and partial differential equations, Contemp. Math., vol. 505, Amer. Math. Soc., Providence, RI, 2010, pp. 105–129. MR 2664564, DOI 10.1090/conm/505/09919
- Pascal Auscher, Alan McIntosh, and Andrea Nahmod, The square root problem of Kato in one dimension, and first order elliptic systems, Indiana Univ. Math. J. 46 (1997), no. 3, 659–695. MR 1488331, DOI 10.1512/iumj.1997.46.1423
- Andreas Axelsson, Stephen Keith, and Alan McIntosh, Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math. 163 (2006), no. 3, 455–497. MR 2207232, DOI 10.1007/s00222-005-0464-x
- Andreas Axelsson, Stephen Keith, and Alan McIntosh, The Kato square root problem for mixed boundary value problems, J. London Math. Soc. (2) 74 (2006), no. 1, 113–130. MR 2254555, DOI 10.1112/S0024610706022873
- D. Azagra, J. Ferrera, F. López-Mesas, and Y. Rangel, Smooth approximation of Lipschitz functions on Riemannian manifolds, J. Math. Anal. Appl. 326 (2007), no. 2, 1370–1378. MR 2280987, DOI 10.1016/j.jmaa.2006.03.088
- Andrea Carbonaro, Alan McIntosh, and Andrew J. Morris, Local Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal. 23 (2013), no. 1, 106–169. MR 3010275, DOI 10.1007/s12220-011-9240-x
- Michael Cowling, Alessio Martini, Sub-Finsler geometry and finite propagation speed, preprint.
- A. F. M. ter Elst, Derek W. Robinson, Adam Sikora, and Yueping Zhu, Second-order operators with degenerate coefficients, Proc. Lond. Math. Soc. (3) 95 (2007), no. 2, 299–328. MR 2352563, DOI 10.1112/plms/pdl017
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Markus Haase, The group reduction for bounded cosine functions on UMD spaces, Math. Z. 262 (2009), no. 2, 281–299. MR 2504878, DOI 10.1007/s00209-008-0373-y
- Nigel Higson and John Roe, Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications. MR 1817560
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- Alan McIntosh, On representing closed accretive sesquilinear forms as $(A^{1/2}u,\,A^{\ast 1/2}v)$, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III (Paris, 1980/1981) Res. Notes in Math., vol. 70, Pitman, Boston, Mass.-London, 1982, pp. 252–267. MR 670278
- Alan McIntosh and Andrea Nahmod, Heat kernel estimates and functional calculi of $-b\Delta$, Math. Scand. 87 (2000), no. 2, 287–319. MR 1795749, DOI 10.7146/math.scand.a-14310
- R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 74 (1953), 199–221. MR 54167, DOI 10.1090/S0002-9947-1953-0054167-3
- Adam Sikora, Riesz transform, Gaussian bounds and the method of wave equation, Math. Z. 247 (2004), no. 3, 643–662. MR 2114433, DOI 10.1007/s00209-003-0639-3
Bibliographic Information
- Alan McIntosh
- Affiliation: Centre for Mathematics and its Applications, Australian National University, Canberra, ACT 0200, Australia
- Email: alan.mcintosh@anu.edu.au
- Andrew J. Morris
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Address at time of publication: Mathematical Institute, University of Oxford, Oxford, OX1 3LB, United Kingdom
- Email: morrisaj@missouri.edu, andrew.morris@maths.ox.ac.uk
- Received by editor(s): December 24, 2011
- Published electronically: June 25, 2013
- Communicated by: Michael T. Lacey
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 3515-3527
- MSC (2010): Primary 35F35, 35L20; Secondary 47D06
- DOI: https://doi.org/10.1090/S0002-9939-2013-11661-8
- MathSciNet review: 3080173