Higher dimensional Enriques varieties with even index
HTML articles powered by AMS MathViewer
- by Jin Hong Kim
- Proc. Amer. Math. Soc. 141 (2013), 3701-3707
- DOI: https://doi.org/10.1090/S0002-9939-2013-11650-3
- Published electronically: July 12, 2013
- PDF | Request permission
Abstract:
Let $Y$ be an Enriques variety of complex dimension $2n-2$ with $n\ge 2$. Assume that $n=2m$ for odd prime $m$. In this paper we show that $Y$ is the quotient of a product of a Calabi-Yau manifold of dimension $2m$ and an irreducible holomorphic symplectic manifold of dimension $2m-2$ by an automorphism of order $n$ acting freely. We also show that both $Y$ and its universal cover are always projective.References
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Samuel Boissière, Automorphismes naturels de l’espace de Douady de points sur une surface, Canad. J. Math. 64 (2012), no. 1, 3–23 (French, with French summary). MR 2932167, DOI 10.4153/CJM-2011-041-5
- Samuel Boissière and Alessandra Sarti, A note on automorphisms and birational transformations of holomorphic symplectic manifolds, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4053–4062. MR 2957195, DOI 10.1090/S0002-9939-2012-11277-8
- Samuel Boissière, Marc Nieper-Wißkirchen, and Alessandra Sarti, Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties, J. Math. Pures Appl. (9) 95 (2011), no. 5, 553–563 (English, with English and French summaries). MR 2786223, DOI 10.1016/j.matpur.2010.12.003
- M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau manifolds and related geometries, Universitext, Springer-Verlag, Berlin, 2003. Lectures from the Summer School held in Nordfjordeid, June 2001. MR 1963559, DOI 10.1007/978-3-642-19004-9
- V. V. Nikulin, Finite groups of automorphisms of Kählerian $K3$ surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137 (Russian). MR 544937
- Keiji Oguiso, Tits alternative in hypekähler manifolds, Math. Res. Lett. 13 (2006), no. 2-3, 307–316. MR 2231119, DOI 10.4310/MRL.2006.v13.n2.a10
- Keiji Oguiso and Stefan Schröer, Enriques manifolds, J. Reine Angew. Math. 661 (2011), 215–235. MR 2863907, DOI 10.1515/CRELLE.2011.077
Bibliographic Information
- Jin Hong Kim
- Affiliation: Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305–701, Republic of Korea
- Address at time of publication: Department of Mathematics Education, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, Republic of Korea
- MR Author ID: 321624
- Email: jinhkim11@gmail.com
- Received by editor(s): September 20, 2011
- Received by editor(s) in revised form: January 6, 2012, and January 11, 2012
- Published electronically: July 12, 2013
- Communicated by: Lev Borisov
- © Copyright 2013 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 3701-3707
- MSC (2010): Primary 14E05, 14J28, 14J32, 14J40
- DOI: https://doi.org/10.1090/S0002-9939-2013-11650-3
- MathSciNet review: 3091762