Cohomology rings for quantized enveloping algebras
HTML articles powered by AMS MathViewer
- by Christopher M. Drupieski
- Proc. Amer. Math. Soc. 141 (2013), 3739-3753
- DOI: https://doi.org/10.1090/S0002-9939-2013-11659-X
- Published electronically: July 16, 2013
- PDF | Request permission
Abstract:
We compute the structure of the cohomology ring for the quantized enveloping algebra (quantum group) $U_q$ associated to a finite-dimensional simple complex Lie algebra $\mathfrak {g}$. We show that the cohomology ring is generated as an exterior algebra by homogeneous elements in the same odd degrees as those that generate the cohomology ring for the Lie algebra $\mathfrak {g}$. Partial results are also obtained for the cohomology rings of the non-restricted quantum groups obtained from $U_q$ by specializing the parameter $q$ to a non-zero value $\varepsilon \in \mathbb {C}$.References
- H. H. Andersen and V. Mazorchuk, Category $\mathcal {O}$ for quantum groups, preprint, 2011.
- H. H. Andersen, P. Polo, and K. Wen, Representations of quantum algebras, Invent. Math. 104 (1991), no. 1, 1–59. MR 1094046 (92e:17011)
- D. W. Barnes, Spectral sequence constructors in algebra and topology, Mem. Amer. Math. Soc. 53 (1985), no. 317, viii+174. MR 776177 (86e:55032)
- Nicolas Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French; Reprint of the 1989 English translation. MR 1727221
- —, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by Andrew Pressley. MR 1890629 (2003a:17001)
- K. A. Brown and K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras of irreducible modules and maximal dimension, J. Algebra 198 (1997), no. 1, 240–265. MR 1482982, DOI 10.1006/jabr.1997.7109
- K. A. Brown and J. J. Zhang, Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras, J. Algebra 320 (2008), no. 5, 1814–1850. MR 2437632, DOI 10.1016/j.jalgebra.2007.03.050
- S. Chemla, Rigid dualizing complex for quantum enveloping algebras and algebras of generalized differential operators, J. Algebra 276 (2004), no. 1, 80–102. MR 2054387 (2005e:17022)
- C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124. MR 0024908 (9,567a)
- C. De Concini and C. Procesi, Quantum groups, $D$-modules, representation theory, and quantum groups (Venice, 1992), Lecture Notes in Math., vol. 1565, Springer, Berlin, 1993, pp. 31–140. MR 1288995 (95j:17012)
- C. De Concini and V. G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601 (92g:17012)
- Christopher M. Drupieski, Daniel K. Nakano, and Nham V. Ngo, Cohomology for infinitesimal unipotent algebraic and quantum groups, Transform. Groups 17 (2012), no. 2, 393–416. MR 2921071, DOI 10.1007/s00031-012-9181-x
- Eric M. Friedlander and Brian J. Parshall, Cohomology of Lie algebras and algebraic groups, Amer. J. Math. 108 (1986), no. 1, 235–253 (1986). MR 821318, DOI 10.2307/2374473
- Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, curvature, and cohomology, Pure and Applied Mathematics, Vol. 47-III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Volume III: Cohomology of principal bundles and homogeneous spaces. MR 0400275
- N. Kowalzig and U. Krähmer, Duality and products in algebraic (co)homology theories, J. Algebra 323 (2010), no. 7, 2063–2081. MR 2594665
- George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, DOI 10.1007/BF00147341
- S. Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition. MR 1344215 (96d:18001)
- A. Masuoka, Abelian and non-abelian second cohomologies of quantized enveloping algebras, J. Algebra 320 (2008), no. 1, 1–47. MR 2417975 (2009f:16016)
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987, With the cooperation of L. W. Small, A Wiley-Interscience Publication. MR 934572 (89j:16023)
- M. Rosso, Analogues de la forme de Killing et du théorème d’Harish-Chandra pour les groupes quantiques, Ann. Sci. École Norm. Sup. (4) 23 (1990), no. 3, 445–467. MR 1055444 (93e:17026)
- Joseph J. Rotman, An introduction to homological algebra, 2nd ed., Universitext, Springer, New York, 2009. MR 2455920, DOI 10.1007/b98977
- Hans Samelson, Topology of Lie groups, Bull. Amer. Math. Soc. 58 (1952), 2–37. MR 45129, DOI 10.1090/S0002-9904-1952-09544-6
- Hirosi Toda and Takashi Watanabe, The integral cohomology ring of $\textbf {F}_{4}/\textbf {T}$ and $\textbf {E}_{6}/\textbf {T}$, J. Math. Kyoto Univ. 14 (1974), 257–286. MR 358847, DOI 10.1215/kjm/1250523239
- Takashi Watanabe, The integral cohomology ring of the symmetric space EVII, J. Math. Kyoto Univ. 15 (1975), no. 2, 363–385. MR 380857, DOI 10.1215/kjm/1250523069
Bibliographic Information
- Christopher M. Drupieski
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602-7403
- Address at time of publication: Department of Mathematical Sciences, DePaul University, Chicago, Illinois 60614
- MR Author ID: 924956
- ORCID: 0000-0002-8250-1030
- Email: cdrup@math.uga.edu, cdrupies@depaul.edu
- Received by editor(s): October 21, 2010
- Received by editor(s) in revised form: December 23, 2011, and January 18, 2012
- Published electronically: July 16, 2013
- Additional Notes: The author was supported in part by NSF VIGRE grant DMS-0738586.
- Communicated by: Gail R. Letzter
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 3739-3753
- MSC (2010): Primary 17B37, 17B56
- DOI: https://doi.org/10.1090/S0002-9939-2013-11659-X
- MathSciNet review: 3091765