HEISENBERG UNIQUENESS PAIRS IN THE PLANE.
THREE PARALLEL LINES

DANIEL BLASI BABOT

(Communicated by Michael T. Lacey)

Abstract. A Heisenberg uniqueness pair is a pair \((\Gamma, \Lambda)\), where \(\Gamma\) is a curve in the plane and \(\Lambda\) is a set in the plane, with the following property: any bounded Borel measure \(\mu\) in the plane supported on \(\Gamma\), which is absolutely continuous with respect to arc length and whose Fourier transform \(\hat{\mu}\) vanishes on \(\Lambda\), must automatically be the zero measure. We characterize the Heisenberg uniqueness pairs for \(\Gamma\) as being three parallel lines \(\Gamma = \mathbb{R} \times \{\alpha, \beta, \gamma\}\) with \(\alpha < \beta < \gamma\),
\((\gamma - \alpha) / (\beta - \alpha) \in \mathbb{N}\).

1. Introduction

The Heisenberg uncertainty principle states that both a function and its Fourier transform cannot be too localized at the same time (see [2] and [3]). M. Benedicks in [1] proved that given a nontrivial function \(f \in L^1(\mathbb{R}^n)\), the Lebesgue measure of the set of points where \(f \neq 0\) and the set of points where the Fourier transform \(\hat{f} \neq 0\) cannot be simultaneously finite. In this paper we consider a similar problem for measures supported on a subset of \(\mathbb{R}^2\).

Let \(\Gamma\) be a smooth curve in the plane \(\mathbb{R}^2\) and \(\Lambda\) a subset in \(\mathbb{R}^2\). In [4], Hedenmalm and Montes-Rodríguez posed the problem of deciding when it is true that
\[\hat{\mu}\mid_{\Lambda} = 0 \text{ implies } \mu = 0\]
for any Borel measure \(\mu\) supported on \(\Gamma\) and absolutely continuous with respect to the arc length measure on \(\Gamma\), where
\[\hat{\mu}(\xi, \eta) = \int_{\mathbb{R}^2} e^{\pi i ((x,y), (\xi, \eta))} d\mu(x,y)\]

If this is the case, then \((\Gamma, \Lambda)\) is called a Heisenberg Uniqueness Pair (HUP).

When \(\Gamma\) is the circle, Lev [7] and Sjölin [8] independently characterized the HUP for some “small” sets \(\Lambda\).

In [4] Hedenmalm and Montes-Rodríguez characterized the HUP in the cases:

- \(\Gamma\) the hyperbola \(xy = 1\) and \(\Lambda = (\alpha \mathbb{Z} \times \{0\}) \cup \{0\} \times \beta \mathbb{Z}\), for \(\alpha, \beta > 0\).
- \(\Gamma\) two parallel lines in \(\mathbb{R}^2\).
In this note we present a result generalizing this last case. We characterize the HUP for Γ as being three parallel lines:

$$\Gamma = \mathbb{R} \times \{\alpha, \beta, \gamma\} \text{ with } \alpha < \beta < \gamma, \ (\gamma - \alpha)/(\beta - \alpha) \in \mathbb{N}.$$

2. Three parallel lines

Given a set $E \subset \mathbb{R}$ and a point $\xi \in E$, let us define:

- $A_{\text{loc}}^{E,\xi} = \{\text{functions } \psi \text{ defined on } E \text{ such that there exist a small interval } I_\xi \text{ around } \xi \text{ and a function } \varphi \in L^1(\mathbb{R}) \text{ such that } \psi(\zeta) = \varphi(\zeta), \text{ for } \zeta \in I_\xi \cap E\}$.
- $P^{1,p}[A_{\text{loc}}^{E,\xi}] = \{\text{functions } \psi \text{ defined on } E \text{ such that there exist an interval } I_\xi \text{ around } \xi \text{ and functions } \varphi_0, \varphi_1 \in L^1(\mathbb{R}) \text{ with } \psi^p(\zeta) + \varphi_1(\zeta)\psi(\zeta) + \varphi_0(\zeta) = 0, \text{ for } \zeta \in I_\xi \cap E\}$.

Wiener’s lemma [5, p. 57] states that if $\psi \in A_{\text{loc}}^{E,\xi}$ and $\psi(\xi) \neq 0$, then $1/\psi \in A_{\text{loc}}^{E,\xi}$. Observe also that if $\psi \in A_{\text{loc}}^{E,\xi}$ then $\psi \in P^{1,p}[A_{\text{loc}}^{E,\xi}]$. This is easy to see only if p is natural.

Due to invariance under translation and rescaling (see [4]) it will be sufficient to study the case when $\Gamma = \mathbb{R} \times \{0, 1, p\}$ for $p \in \mathbb{N}$, $p > 1$.

Given a set $\Lambda \subset \mathbb{R}^2$, we say that μ is an admissible measure if μ is a Borel measure in the plane absolutely continuous with respect to arc length with $\text{supp } \mu \subset \Gamma$ and $\widehat{\mu}|_{\Lambda} = 0$.

If μ is a measure absolutely continuous with respect to arc length on Γ, then there exist functions $f, g, h \in L^1(\mathbb{R})$ such that

$$\widehat{\mu}(\xi, \eta) = \hat{f}(\xi) + e^{\pi i \eta} \hat{g}(\xi) + e^{p\pi i \eta} \hat{h}(\xi), \text{ for any } (\xi, \eta) \in \mathbb{R}^2.$$

In particular an admissible measure can be written in this form. Observe also that $\widehat{\mu}$ is 2-periodic with respect to the second variable. So, for any set $\Lambda \subset \mathbb{R}^2$, we may consider the periodized set

$$\mathcal{P}(\Lambda) = \{(\xi, \eta) \text{ such that } (\xi, \eta + 2k) \in \Lambda \text{ for some } k \in \mathbb{Z}\},$$

and it follows that (Γ, Λ) is a HUP if and only if $(\Gamma, \overline{\mathcal{P}(\Lambda)})$ is a HUP, where $\overline{\mathcal{P}(\Lambda)}$ stands for the closure of $\mathcal{P}(\Lambda)$ in \mathbb{R}^2.

We may think without loss of generality that Λ is a closed set in \mathbb{R}^2, 2-periodic with respect to the second coordinate.

We then have the following result.

Theorem 1. Let $\Gamma = \mathbb{R} \times \{0, 1, p\}$, for some $p \in \mathbb{N}$, $p > 1$ and $\Lambda \subset \mathbb{R}^2$, closed and 2-periodic with respect to the second variable. Then (Γ, Λ) is a Heisenberg uniqueness pair if and only if

$$(2.1) \quad \mathfrak{F} := \Pi^3(\Lambda) \cup (\Pi^2(\Lambda) \setminus \Pi^2(\Lambda)) \cup (\Pi^1(\Lambda) \setminus \Pi^1(\Lambda))$$

is dense in \mathbb{R}.

$\Pi(\Lambda)$ means the projection of Λ on the axis $\mathbb{R} \times \{0\}$ and given a point $\xi \in \Pi(\Lambda)$, and $\text{Img}(\xi)$ corresponds to the set of points $\eta \in [0, 2)$ with $(\xi, \eta) \in \Lambda$. The sets in \mathfrak{F} are defined as follows:

- $\Pi^1(\Lambda) = \{\xi \in \Pi(\Lambda) \text{ such that there is a unique } \eta_0 \in \text{Img}(\xi)\}$.
- $\Pi^2(\Lambda) = \{\xi \in \Pi(\Lambda) \text{ such that there are two different points } \eta_0, \eta_1 \in \text{Img}(\xi), \text{ and if there is another point } \eta_2 \in \text{Img}(\xi), \text{ then } \frac{e^{p\pi i \eta_2} - e^{\pi i \eta_0}}{e^{\pi i \eta_2} - e^{\pi i \eta_0}} = \frac{e^{p\pi i \eta_1} - e^{\pi i \eta_0}}{e^{\pi i \eta_1} - e^{\pi i \eta_0}}\}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
* \(\Pi^3(\Lambda) = \{ \xi \in \Pi(\Lambda) \text{ such that there are at least three different points } \eta_0, \eta_1, \eta_2 \in Img(\xi) \text{ with } e^{p\pi i \eta_1} - e^{p\pi i \eta_0} \neq e^{p\pi i \eta_2} - e^{p\pi i \eta_0} \}. \)

The following technical lemma is easy to prove and shows that the functions \(\tau \) and \(\Phi \) are well defined for \(\xi \in \Pi^3(\Lambda) \).

Lemma 2. Let \(x, y, z \in \mathbb{C} \) be different with
\[
\tau = \frac{y^p - x^p}{y - x} = \frac{z^p - x^p}{z - x};
\]
then
\[
\frac{z^p - y^p}{z - y} = \tau \quad \text{and} \quad \Phi = x\tau - x^p = y\tau - y^p = z\tau - z^p.
\]

Let \(\chi \) be a function defined on \(\Pi^1(\Lambda) \) as \(\chi(\xi) = e^{p\pi i \eta} \), where \(\eta \in Img(\xi) \). We define the set \(\Pi^{1*}(\Lambda) \) as

* \(\Pi^{1*}(\Lambda) = \{ \xi \in \Pi^1(\Lambda) \text{ such that } \chi \in \mathcal{D}_{\mathcal{P}}[A^{\Pi^1(\Lambda)}_{loc}, \xi] \}. \)

Let \(\tau, \Phi \) be functions defined on \(\Pi^2(\Lambda) \) as
\[
\tau(\xi) = \frac{e^{p\pi i \eta_1} - e^{p\pi i \eta_0}}{e^{p\pi i \eta_1} - e^{p\pi i \eta_0}} \quad \text{and} \quad \Phi(\xi) = e^{p\pi i \eta_0} \frac{e^{p\pi i \eta_1} - e^{p\pi i \eta_0}}{e^{p\pi i \eta_1} - e^{p\pi i \eta_0}} - e^{p\pi i \eta_0},
\]
where \(\eta_0, \eta_1 \in Img(\xi) \). We define the set \(\Pi^{2*}(\Lambda) \) as

* \(\Pi^{2*}(\Lambda) = \{ \xi \in \Pi^2(\Lambda) \text{ such that } \tau, \Phi \in A^{\Pi^2(\Lambda)}_{loc}, \xi \}. \)

The next lemma will be needed for the proof of the necessity of condition (2.1) in Theorem 1.

Lemma 3. Let \(I \) be an interval in \(\mathbb{R} \) with \(\Pi^2(\Lambda) \) dense in \(I \). Then there exists a subinterval \(I' \subset I \) with \(I' \subset \Pi^2(\Lambda) \cup \Pi^3(\Lambda) \).

Proof. Pick an arbitrary point \(\tilde{\xi} \in I \cap \Pi^2(\Lambda) \). Since \(\tau, \Phi \in A^{\Pi^2(\Lambda)}_{loc}, \tilde{\xi} \) and \(\Pi^2(\Lambda) \) is dense in \(I \), we can extend the functions \(\tau, \Phi \) continuously on a neighborhood of \(\tilde{\xi} \). Let \(\tilde{\eta} \neq \tilde{\eta} \in Img(\tilde{\xi}) \). Then
\[
|\tau(\tilde{\xi})| = \left| \frac{e^{p\pi i \tilde{\eta}} - e^{p\pi i \tilde{\eta}}}{e^{p\pi i \tilde{\eta}} - e^{p\pi i \tilde{\eta}}} \right| < p,
\]
and since \(\tau \) is continuous around \(\tilde{\xi} \), there exists a small interval \(I' \) around \(\tilde{\xi} \) with \(|\tau(\xi)| < p \) for \(\xi \in I' \). We will see that \(I' \subset \Pi^2(\Lambda) \cup \Pi^3(\Lambda) \).

Given \(\xi \in I' \), consider a sequence \(\{\xi_k\} \subset \Pi^2(\Lambda) \cap I' \) with \(\xi_k \to \xi \), and for each \(\xi_k \) let \(\eta_k \neq \eta_k \in Img(\xi_k) \). There exist subsequences \(\{\eta^*_k\} \) and \(\{\eta^*_k\} \) such that \(\eta^*_k \to \eta^* \) and \(\eta^*_k \to \eta^* \) for some \(\eta^*, \eta^* \in [0, 2] \). Since the set \(\Lambda \) is closed and 2-periodic with respect to the second coordinate, we can assume WLOG that \(\xi \in \Pi(\Lambda) \) with \(\eta^* \neq \eta^* \in Img(\xi) \). Otherwise,
\[
|\tau(\xi)| \leftarrow |\tau(\xi,\eta)| = \left| e^{(p-1)p\pi i \eta^*} + e^{(p-2)p\pi i \eta^*} + \ldots + e^{(p-1)p\pi i \eta^*} \right| = p
\]
which is a contradiction with the fact that \(\xi \in I' \).

So \(I' \subset \Pi^2(\Lambda) \cup \Pi^3(\Lambda) \), and since the extended functions \(\tau, \Phi \) are continuous on \(I' \), we also have that \(\xi \in \Pi^2(\Lambda) \) for any \(\xi \in \Pi^2(\Lambda) \cap I' \). Also, we can conclude that \(I' \subset \Pi^2(\Lambda) \cup \Pi^3(\Lambda) \). \(\square \)
3. Proof of the main result

This section is devoted to the proof of Theorem 1. The proof of the sufficiency of condition (2.1) is rather easy. Let μ be an admissible measure. Then there exist functions \(f, g, h \in L^1(\mathbb{R}) \) such that

\[
\hat{\mu}(\xi, \eta) = \hat{f}(\xi) + e^{\pi i \eta} \hat{g}(\xi) + e^{\pi i \eta} \hat{h}(\xi), \quad \text{for any } (\xi, \eta) \in \mathbb{R}^2.
\]

Since \(\mathfrak{f} \) is dense in \(\mathbb{R} \) we will be done if we show that \(\hat{f}(\xi) = \hat{g}(\xi) = \hat{h}(\xi) = 0 \) for any \(\xi \in \mathfrak{f} = \Pi^3(\Lambda) \cup (\Pi^2(\Lambda) \setminus \Pi^2(\Lambda)) \cup (\Pi^1(\Lambda) \setminus \Pi^1(\Lambda)). \)

If \(\xi \in \Pi^3(\Lambda) \), let \(\eta_0, \eta_1, \eta_2 \in \text{Im} g(\xi) \) be different. Since \(\hat{\mu}_{|\Lambda} = 0 \) and \(\frac{e^{\pi i \eta} - e^{\pi i \eta_0}}{e^{\pi i \eta_2} - e^{\pi i \eta_0}} \), it follows that \(\hat{f}(\xi) = \hat{g}(\xi) = \hat{h}(\xi) = 0. \)

If \(\xi \in \Pi^2(\Lambda) \), let \(\eta_0 \neq \eta_1 \in \text{Im} g(\xi) \). Since \(\hat{\mu}_{|\Lambda} = 0 \), then \(\hat{g}(\xi) = -\tau(\xi) \hat{h}(\xi) \) and \(\hat{f}(\xi) = \Phi(\xi) \hat{h}(\xi) \). Suppose \(\hat{h}(\xi) \neq 0 \). Then by Wiener’s lemma and Fubini’s theorem, \(\tau, \Phi \in \mathcal{A}_{\text{loc}}^{\Pi^2(\Lambda)} \), which implies that \(\xi \in \Pi^2(\Lambda) \). So if \(\xi \in \Pi^2(\Lambda) \setminus \Pi^2(\Lambda) \), then \(\hat{f}(\xi) = \hat{g}(\xi) = \hat{h}(\xi) = 0. \)

Finally, if \(\xi \in \Pi^1(\Lambda) \) and \(\eta_0 \in \text{Im} g(\xi) \), since \(\hat{\mu}_{|\Lambda} = 0 \), then \(\hat{f}(\xi) = \hat{\chi}(\xi) \hat{g}(\xi) + \chi^p(\xi) \hat{h}(\xi) = 0 \), where \(\chi(\xi) = e^{\pi i \eta_0} \). Suppose \(\hat{h}(\xi) \neq 0 \); then \(\xi \in P^1, p[\mathcal{A}_{\text{loc}}^{\Pi^1(\Lambda)}] \) and \(\hat{\mu}_{|\Lambda} = 0 \). Otherwise, if \(\hat{g}(\xi) = 0 \), then by Wiener’s lemma and Fubini’s theorem, \(\chi \in \mathcal{A}_{\text{loc}}^{\Pi^1(\Lambda)} \) and also \(\chi^p \in \mathcal{A}_{\text{loc}}^{\Pi^1(\Lambda)} \), so \(\xi \in P^1, p[\mathcal{A}_{\text{loc}}^{\Pi^1(\Lambda)}] \) and \(\hat{\mu}_{|\Lambda} = 0 \). This means that \(\xi \in \Pi^2(\Lambda) \). Then \(\hat{f}(\xi) = \hat{g}(\xi) = \hat{h}(\xi) = 0. \)

For the proof of the necessity of condition (2.1), suppose that the set \(\mathfrak{f} \) is not dense in \(\mathbb{R} \) and let us pick an open interval \(I \) that has empty intersection with \(\mathfrak{f} \), i.e.,

\[
\Pi(\Lambda) \cap I = (\Pi^1(\Lambda) \cup \Pi^2(\Lambda)) \cap I.
\]

We consider three cases:

- There exists a small interval \(I_\xi \subset I \) around \(\xi \in \Pi^1(\Lambda) \) such that all the points in \(I_\xi \cap \Pi(\Lambda) \) belong to \(\Pi^1(\Lambda) \). Since \(\chi \in P^1, p[\mathcal{A}_{\text{loc}}^{\Pi^1(\Lambda)}] \), there exist an interval \(I' \subset I_\xi \) around \(\xi \) and functions \(\varphi_0, \varphi_1 \in L^1(\mathbb{R}) \) such that

\[
\chi^p(\xi^*) + \varphi_1(\xi^*) \chi(\xi^*) + \varphi_0(\xi^*) = 0
\]

for any \(\xi^* \in I' \cap \Pi(\Lambda) \). Let \(h \in L^1(\mathbb{R}) \) with \(\hat{h}(\xi) \neq 0 \) and \(\text{supp } \hat{h} \subset I' \), and define \(f, g \in L^1(\mathbb{R}) \) via \(\hat{f} = \hat{h} \hat{\varphi}_0 \), and \(\hat{g} = \hat{h} \hat{\varphi}_1 \). Now,

\[
\hat{\mu}(\xi^*, \eta^*) = \hat{f}(\xi^*) + \hat{g}(\xi^*) \chi(\xi^*) + \hat{h}(\xi^*) \chi^p(\xi^*) = 0
\]

for \(\xi^* \in I' \cap \Pi^1(\Lambda), \eta^* \in \text{Im} g(\xi^*) \). Finally, since \(\text{supp } \hat{h} \subset I' \) and \(I' \cap \Pi(\Lambda) = I' \cap \Pi^1(\Lambda) \), we can conclude that \(\hat{\mu}_{|\Lambda} = 0 \), and we have that \(\mu \) is a nontrivial admissible measure. So \((\Gamma, \Lambda) \) is not a Heisenberg uniqueness pair.

- There exists a small interval \(I_\xi \subset I \) around \(\xi \in \Pi^2(\Lambda) \) such that all the points in \(I_\xi \cap \Pi(\Lambda) \) belong to \(\Pi^2(\Lambda) \). Now there exists a small interval \(I' \subset I_\xi \) around \(\xi \) and functions \(\Phi_1, \tau_1 \in L^1(\mathbb{R}) \) such that \(\tau_1 = \tau \) and \(\Phi_1 = \Phi \) on \(I' \cap \Pi(\Lambda) \). Consider a function \(h \in L^1(\mathbb{R}) \) with \(\text{supp } \hat{h} \subset I' \) and \(\hat{h}(\xi) \neq 0 \), and define \(f, g \in L^1(\mathbb{R}) \) as

\[
g = -h * \tau_1 \quad \text{and} \quad f = h * \Phi_1.
\]
Now, given a point $\xi^* \in I' \cap \Pi^2(\Lambda)$, let $\eta^* \neq \vartheta^* \in \text{Img}(\xi^*)$. Since $\tau(\xi^*) = \frac{e^{\vartheta^*}}{e^{\vartheta^*} - e^{\vartheta^*}}$ and $\Phi(\xi) = e^{\vartheta^*} - e^{\vartheta^*} - e^{\vartheta^*}$, we have
\[
\hat{\mu}(\xi^*, \eta^*) = \hat{f}(\xi^*) + \hat{g}(\xi^*)e^{\vartheta^*} + \hat{h}(\xi^*)e^{\vartheta^*} = 0
\]
and also that $\hat{\mu}(\xi^*, \vartheta^*) = 0$. So, the corresponding measure μ is a nontrivial admissible measure and (Γ, Λ) is not a Heisenberg uniqueness pair.

- All the intervals $I_3 \subset I$ contain points in $\Pi^1(\Lambda)$ and points in $\Pi^2(\Lambda)$. That is, the sets $\Pi^1(\Lambda)$ and $\Pi^2(\Lambda)$ are dense in $I \cap (\Pi^1(\Lambda) \cup \Pi^2(\Lambda)) = I \cap \Pi(\Lambda)$. But this is not possible. In fact, if $\Pi^2(\Lambda)$ is dense in I, by Lemma 3 there exists a subinterval $I' \subset I$ such that $I' \subset \Pi^2(\Lambda) \cup \Pi^3(\Lambda).

This finishes the proof of the theorem.

4. Examples and Further Results

Given a point $\xi \in \Pi(\Lambda)$ such that $\sharp\{\eta \in \text{Img}(\xi)\} \geq 3$, we will state a criteria to decide whether the point ξ belongs to $\Pi^3(\Lambda)$ or to $\Pi^2(\Lambda)$. But before this we prove the following lemma.

Lemma 4. Given $C \subset \mathbb{C}$, there exist at most p different points $\rho(k) \in [0, 2)$ such that for any $j \neq k$,
\[
x^p - y^p = C, \quad \text{where} \quad x = e^{\pi i \rho(k)}, \ y = e^{\pi i \rho(j)}.
\]

Proof. Observe that for fixed C, there exists a constant $C^* \in \mathbb{C}$ such that
\[
xC - x^p = C^*
\]
for any $x = e^{\pi i \rho(k)}$ solution of (4.1). Now it is obvious that there are at most p different solutions $\rho(k) \in [0, 2)$ of the equation (4.2). \(\square\)

Corollary 5. Given a point $\xi \in \Pi(\Lambda)$, if $\sharp\{\eta \in \text{Img}(\xi)\} > p$, then $\xi \in \Pi^3(\Lambda)$.

In particular, if Γ consists of three parallel equidistant lines in the plane $(p = 2)$, we have

- $\Pi^3(\Lambda) = \{ \xi \in \Lambda \text{ such that } \sharp\{\eta \in \text{Img}(\xi)\} \geq 3 \},$
- $\Pi^2(\Lambda) = \{ \xi \in \Lambda \text{ such that } \sharp\{\eta \in \text{Img}(\xi)\} = 2 \}.$

Example 6. The following example shows that Corollary 5 is sharp:

- Let $\Lambda = \mathbb{R} \times \{2k/p\}_{k=0,\ldots,p-1}$. Then for any $\xi \in \mathbb{R},$
 \[
 \sharp\{\eta \in \text{Img}(\xi)\} = p
 \]
 and $\xi \in \Pi^2(\Lambda)$. Observe that in this case, (Γ, Λ) is not an HUP.

This lemma will be useful for another example.

Lemma 7. For any $z \in \mathbb{C}$ with $|z| < 1$, there exist $w_1, w_2 \in \mathbb{C}$ unimodular with $z = w_1 + w_2$.

Proof. Let $z = re^{i\sigma}$ and let $v \in [0, \pi/2]$ with $\cos v = r/2$. Let’s take
\[
w_1 = e^{i(v + \sigma)}, \quad w_2 = e^{i(-v + \sigma)}.
\]
Then,
\[
w_1 + w_2 = e^{i(v + \sigma)} + e^{i(-v + \sigma)} = e^{i\sigma}2\cos(v) = re^{i\sigma} = z,
\]
and this finishes the proof. \(\square\)
Example 8. Let \(p = 2 \). Let \(g \) be a bounded, continuous function with \(|g| < 1\) that is nowhere locally the Fourier transform of an \(L^1 \) function. There exists a set \(\Lambda \subset \mathbb{R} \times [0,2) \) such that \(\Pi(\Lambda) = \Pi^2(\Lambda) \) is dense in \(\mathbb{R} \) and the function \(\Phi \equiv g \) on \(\Pi^2(\Lambda) \). So, \((\Gamma, \Lambda) \) is not an HUP.

Let’s first prove the existence of the function \(g \). Let \(E \) be a dense set of measure zero on the circle \(T \). By [6] there exists a continuous function \(f \) such that the Fourier series of \(f \) fails to converge on any point of \(E \). Now let \(g : \mathbb{R} \to \mathbb{C} \) be the \(2 \)-periodic function defined as \(g(t) = f(e^{\pi it}) \). It is easy to see that this function \(g \) is continuous but it is not a Fourier transform of an \(L^1 \) function locally at any point. By a standard argument we can think that \(g \) is bounded with \(|g| < 1\).

Now we will define the set \(\Lambda \). By Lemma 7, for any \(\xi \in \mathbb{R} \) there exist \(w_1(\xi) = e^{\pi i \eta_0} \), \(w_2(\xi) = e^{\pi i \eta_1} \) with \(w_1(\xi) + w_2(\xi) = g(\xi) \). Observe also that there is a dense set \(\Psi \) of \(\mathbb{R} \) such that \(\eta_0 \neq \eta_1 \) for any \(\xi \in \Psi \). Otherwise the function \(g \) is constant on an interval, and we get a contradiction with the fact that \(g \) is not locally the Fourier transform of an \(L^1 \) function.

We define \(\Lambda = \{(\xi, \eta_0) \cup (\xi, \eta_1)\}_{\xi \in \Psi} \). Now \(\Pi(\Lambda) = \Pi^2(\Lambda) \) and \(\Phi(\xi) = e^{\pi i \eta_0} + e^{\pi i \eta_1} = g(\xi) \), for any \(\xi \in \Psi \).

Since \(\Phi \notin \mathcal{A}_{loc}^{\Pi^2(\Lambda),\xi} \) for any \(\xi \in \Pi^2(\Lambda) \), we have that \(\Pi(\Lambda) = \Pi^2(\Lambda) \), and so \((\Gamma, \Lambda) \) is not an HUP.

Acknowledgements

The author thanks Håkan Hedenmalm for proposing the problem and Ioannis Parissis and Joaquim Ortega-Cerdà for helpful comments.

References

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalunya, Spain
E-mail address: dblasi@gmail.com