$L^p$-nuclear pseudo-differential operators on $\mathbb {Z}$ and $\mathbb {S}^1$
HTML articles powered by AMS MathViewer
- by Julio Delgado and M. W. Wong
- Proc. Amer. Math. Soc. 141 (2013), 3935-3942
- DOI: https://doi.org/10.1090/S0002-9939-2013-11771-5
- Published electronically: July 25, 2013
- PDF | Request permission
Abstract:
Conditions for pseudo-differential operators from $L^{p_1}(\mathbb {Z})$ into $L^{p_2}(\mathbb {Z})$ and from $L^{p_1}({\mathbb S}^1)$ into $L^{p_2}({\mathbb S}^1)$ to be nuclear are presented for $1\leq p_1$, $p_2<\infty .$ In the cases when $p_1=p_2,$ the trace formulas are given.References
- Chris Brislawn, Kernels of trace class operators, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1181–1190. MR 929421, DOI 10.1090/S0002-9939-1988-0929421-X
- Chris Brislawn, Traceable integral kernels on countably generated measure spaces, Pacific J. Math. 150 (1991), no. 2, 229–240. MR 1123441
- Julio Delgado, The trace of nuclear operators on $L^p(\mu )$ for $\sigma$-finite Borel measures on second countable spaces, Integral Equations Operator Theory 68 (2010), no. 1, 61–74. MR 2677888, DOI 10.1007/s00020-010-1813-8
- Julio Delgado, A trace formula for nuclear operators on $L^p$, Pseudo-differential operators: complex analysis and partial differential equations, Oper. Theory Adv. Appl., vol. 205, Birkhäuser Verlag, Basel, 2010, pp. 181–193. MR 2664581
- Israel Gohberg, Seymour Goldberg, and Nahum Krupnik, Traces and determinants of linear operators, Operator Theory: Advances and Applications, vol. 116, Birkhäuser Verlag, Basel, 2000. MR 1744872, DOI 10.1007/978-3-0348-8401-3
- A. Grothendieck, La théorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319–384 (French). MR 88665
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Peter D. Lax, Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. MR 1892228
- V. B. Lidskiĭ, Non-selfadjoint operators with a trace, Dokl. Akad. Nauk SSSR 125 (1959), 485–487 (Russian). MR 0105023
- Shahla Molahajloo, Pseudo-differential operators on $\Bbb Z$, Pseudo-differential operators: complex analysis and partial differential equations, Oper. Theory Adv. Appl., vol. 205, Birkhäuser Verlag, Basel, 2010, pp. 213–221. MR 2664583
- Shahla Molahajloo and M. W. Wong, Pseudo-differential operators on $\Bbb S^1$, New developments in pseudo-differential operators, Oper. Theory Adv. Appl., vol. 189, Birkhäuser, Basel, 2009, pp. 297–306. MR 2509104, DOI 10.1007/978-3-7643-8969-7_{1}5
- Shahla Molahajloo and M. W. Wong, Ellipticity, Fredholmness and spectral invariance of pseudo-differential operators on $\Bbb S^1$, J. Pseudo-Differ. Oper. Appl. 1 (2010), no. 2, 183–205. MR 2679899, DOI 10.1007/s11868-010-0010-5
- Rodriguez Torijano Carlos Andres, $L^p$-estimates for pseudo-differential operators on $\Bbb Z^n$, J. Pseudo-Differ. Oper. Appl. 2 (2011), no. 3, 367–375. MR 2831664, DOI 10.1007/s11868-011-0035-4
- M. W. Wong, Discrete Fourier analysis, Pseudo-Differential Operators. Theory and Applications, vol. 5, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2809393, DOI 10.1007/978-3-0348-0116-4
Bibliographic Information
- Julio Delgado
- Affiliation: Departamento de Matemáticas, Universidad del Valle, Calle 13 100-00 Cali, Colombia
- Address at time of publication: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- Email: julio.delgado@correounivalle.edu.co, j.delgado@imperial.ac.uk
- M. W. Wong
- Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
- Email: mwwong@mathstat.yorku.ca
- Received by editor(s): October 22, 2011
- Received by editor(s) in revised form: January 26, 2012
- Published electronically: July 25, 2013
- Communicated by: Michael Hitrik
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 3935-3942
- MSC (2010): Primary 47G30; Secondary 47G10
- DOI: https://doi.org/10.1090/S0002-9939-2013-11771-5
- MathSciNet review: 3091784