INVERTIBLE WEIGHTED SHIFT OPERATORS WHICH ARE m-ISOMETRIES

MUNEO CHÔ, SCHÔICHI ŌTA, AND KÔTARÔ TANAHASHI

(Communicated by Richard Rochberg)

Abstract. For a bounded linear operator T on a complex Hilbert space H, let
$$
\Delta_{T,m} = \sum_{k=0}^{m} (-1)^{k} \binom{m}{k} T^{*m-k}T^{m-k} \quad \text{for } m \in \mathbb{N}.
$$
T is called an m-isometry if $\Delta_{T,m} = 0$. In this paper, for every even number m, we give an example of invertible $(m+1)$-isometry which is not an m-isometry. Next we show that if T is an m-isometry, then the operator $\Delta_{T,m-1}$ is not invertible.

1. Introduction

J. Agler and M. Stankus published excellent papers about m-isometric operators, [1], [2] and [3]. They showed that m-isometries have interesting spectral properties. For example, if T is an m-isometry, then the approximate point spectrum of T lies on the unit circle. In [10], Patel showed that Weyl’s theorem holds for a 2-isometry. Applying Uchiyama and Tanahashi’s result [11], in [8] we showed that if T is an m-isometry, then T has the single valued extension property. Let H be a complex Hilbert space and $B(H)$ be a set of all bounded linear operators on H. Let $\binom{m}{k}$ be the binomial coefficient. For an operator $T \in B(H)$, let
$$
\Delta_{T,m} = \sum_{k=0}^{m} (-1)^{k} \binom{m}{k} T^{*m-k}T^{m-k}.
$$
T is said to be an m-isometry if $\Delta_{T,m} = 0$. Agler and Stankus proved that if T is an m-isometry, then $\Delta_{T,m-1} \geq 0$ (Proposition 1.5, [1]). It is easy to see that $T^{*}\Delta_{T,m}T - \Delta_{T,m} = \Delta_{T,m+1}$. Hence it holds that if T is an m-isometry, then T is an $(m+1)$-isometry. In [7], T. Bermudez, A. Martinon and E. Negrin studied characterizations of weighted shift operators which are m-isometries. In [1], Agler and Stankus proved that if m is even and T is an invertible m-isometry, then T is an $(m-1)$-isometry. In [4] A. Athavale proved that if S is a unilateral weighted shift

Received by the editors October 2, 2011 and, in revised form, January 31, 2012.

2010 Mathematics Subject Classification. Primary 47B37.

Key words and phrases. Hilbert space, m-isometry, bilateral weighted shift.

The first author’s research was partially supported by Grant-in-Aid for Scientific Research, No. 20540192.

The second author’s research was partially supported by Grant-in-Aid for Scientific Research, No. 20540178.

The third author’s research was partially supported by Grant-in-Aid for Scientific Research, No. 20540184.

©2013 American Mathematical Society
Reverts to public domain 28 years from publication
$Se_n = w_n e_{n+1}$ with weights $w_n = \sqrt{1 + \frac{m}{n}}$ for $n = 1, 2, 3, \cdots$, then S is an $(m+1)$-isometry which is not an m-isometry. The operator S is not invertible. We have not seen invertible $(m+1)$-isometries which are weighted shifts for m even. We give an example of an invertible $(m+1)$-isometry which is not an m-isometry for every even number m. Next we prove that power bounded m-isometries are isometries, and if T is an m-isometry for a natural number $m \geq 2$, then the operator $\Delta_{T,m-1}$ is not invertible.

2. INVERTIBLE WEIGHTED SHIFT OF AN m-ISOMETRY

Agler and Stankus showed the following result.

Proposition A (Proposition 1.23, [1]). *If T is an invertible m-isometry and m is even, then T is an $(m-1)$-isometry.*

Their proof is fine. We give another proof.

Proof. Since T is an m-isometry, it holds that

$$\Delta_{T,m-1} = \sum_{k=0}^{m-1} (-1)^k \binom{m-1}{k} T^{m-1-k} T^{m-1-k} \geq 0. \quad (2.1)$$

It is easy to see that T^{-1} also is an m-isometry. Since T^{-1} is an m-isometry, it holds that

$$\Delta_{T^{-1},m-1} = \sum_{k=0}^{m-1} (-1)^k \binom{m-1}{k} (T^{-1})^{m-1-k} (T^{-1})^{m-1-k} \geq 0. \quad (2.2)$$

Since $m-1$ is an odd number, by (2.2) we have

$$-\Delta_{T,m-1} = \sum_{k=0}^{m-1} (-1)^k \binom{m-1}{k} T^{m-1} T^k = \sum_{k=0}^{m-1} (-1)^k \binom{m-1}{k} T^{m-1} (T^{-1})^{m-1-k} (T^{-1})^{m-1-k} T^{m-1}$$

$$= T^{m-1} (\Delta_{T^{-1},m-1}) T^{m-1} \geq 0.$$

Hence $\Delta_{T,m-1} \leq 0$. By (2.1) we have $\Delta_{T,m-1} = 0$, so the proof is complete. \[\□\]

For every even number m, we give an example of an invertible $(m+1)$-isometry T which is not an m-isometry.

Theorem 1. *For any even number m, there exists an invertible $(m+1)$-isometry T which is not an m-isometry.*

Proof. Let m be any even number and put $\psi(x) = x(x+1) \cdots (x+m-1)$. Then $\psi(x)$ is a polynomial of even degree m. Hence $\psi(n) \geq 0$ for $n = 0, \pm 1, \pm 2, \cdots$. So, for any $k > 0$, we have $\psi(n) + k > 0$ for $n = 0, \pm 1, \pm 2, \cdots$. Let

$$w_n = \sqrt{\frac{\psi(n+1) + k}{\psi(n) + k}} > 0 \quad \text{for} \ n = 0, \pm 1, \pm 2, \cdots.$$
Let $\{e_n\}_{n=-\infty}^\infty$ be an orthonormal basis of $\mathcal{H} = \ell^2$ and T be a bilateral weighted shift such that $T e_n = w_n e_{n+1}$. We define
\[
I_{m,n} = w_n^2 w_{n+1}^2 \cdots w_{n+m-1}^2 - \left(\frac{m}{1} \right) w_n^2 w_{n+1}^2 \cdots w_{n+m-2}^2 + \left(\frac{m}{2} \right) w_n^2 w_{n+1}^2 \cdots w_{n+m-3}^2 + \cdots + (-1)^{m-1} \left(\frac{m}{m-1} \right) w_n^2 + (-1)^m.
\]
Note that T is an m-isometry if and only if $I_{m,n} = 0$ for $n = 0, \pm 1, \pm 2, \cdots$. To show T is an $(m+1)$-isometry, we will show that $I_{m+1,n} = 0$ for $n = 0, \pm 1, \pm 2, \cdots$. We define a function $f(x)$ as
\[
f(x) = x^{n+m-1}(1 - x)^{m+1}
\]
\[
= x^{n+m-1} - \left(\frac{m+1}{1} \right) x^{n+m} + \left(\frac{m+1}{2} \right) x^{n+m+1}
\]
\[
+ \cdots + (-1)^m \left(\frac{m+1}{m} \right) x^{n+2m-1} + (-1)^{m+1}x^{n+2m}.
\]
Note that $f^{(m)}(1) = 0$. By differentiating m times, we have
\[
0 = f^{(m)}(1)
\]
\[
= (n + m - 1)(n + m - 2) \cdots n
\]
\[
- \left(\frac{m+1}{1} \right) (n + m)(n + m - 1) \cdots (n + 1)
\]
\[
+ \cdots + (-1)^m \left(\frac{m+1}{m} \right) (n + 2m - 1)(n + 2m - 2) \cdots (n + m)
\]
\[
+ (-1)^{m+1}(n + 2m)(n + 2m - 1) \cdots (n + m + 1).
\]
Hence
\[
(-1)^{m+1}I_{m+1,n} \psi(n) + k
\]
\[
= (n + m + 1)(n + m + 2) \cdots (n + 2m) + k
\]
\[
- \left(\frac{m+1}{1} \right) \{ (n + m)(n + m + 1) \cdots (n + 2m - 1) + k \}
\]
\[
+ \cdots + (-1)^m \left(\frac{m+1}{m} \right) \{ (n + 1)(n + 2) \cdots (n + m) + k \}
\]
\[
+ (-1)^{m+1} \{ n(n + 1)(n + 2) \cdots (n + m - 1) + k \}
\]
\[
= f^{(m)}(1) + k(1 - 1)^{m+1} = 0.
\]
This implies that $I_{m+1,n} = 0$. Hence T is an $(m+1)$-isometry.
To show that T is not an m-isometry, we will show that $I_{m,n} \neq 0$ for $n = 0, \pm 1, \pm 2, \cdots$. We define a function $g(x)$ as
\[
g(x) = x^{n+m-1}(1 - x)^m
\]
\[
= x^{n+m-1} - \left(\frac{m}{1} \right) x^{n+m} + \left(\frac{m}{2} \right) x^{n+m+1}
\]
\[
+ \cdots + (-1)^{m-1} \left(\frac{m}{m-1} \right) x^{n+2m-2} + (-1)^m x^{n+2m-1}.
\]
Note that \(g^{(m)}(1) = m!(-1)^m \). By differentiating \(m \) times, we have
\[
m!(-1)^m = g^{(m)}(1)
= (n + m - 1)(n + m - 2) \cdots n
- \binom{m}{1} (n + m)(n + m - 1) \cdots (n + 1)
+ \cdots + (-1)^{m-1} \binom{m}{m-1} (n + 2m - 2)(n + 2m - 3) \cdots (n + m - 1)
+ (-1)^m (n + 2m - 1)(n + 2m - 2) \cdots (n + m).
\]

Hence
\[
(-1)^m I_{m,n} (\psi(n) + k)
= (n + m)(n + m + 1) \cdots (n + 2m - 1) + k
- \binom{m}{1} \{ (n + m - 1)(n + m) \cdots (n + 2m - 2) + k \}
+ \cdots + (-1)^{m-1} \binom{m}{m-1} \{ (n + 1)(n + 2) \cdots (n + m) + k \}
+ (-1)^m \{ n(n + 1)(n + 2) \cdots (n + m - 1) + k \}
= g^{(m)}(1) + k (1 - 1)^m = m!(-1)^m.
\]

This implies that \(I_{m,n} = m! (\psi(n) + k)^{-1} \neq 0 \). Hence \(T \) is not an \(m \)-isometry.

Finally, since \(\omega_n \to 1 \ (n \to \pm \infty) \), we have \(\sigma(T) = \{ \lambda : |\lambda| = 1 \} \) by Proposition 2.6.8 (b) of [9]. Therefore \(T \) is invertible. The proof is complete. \(\square \)

Remark 1. This result provides an example of an \((m+1)\)-isometry \(T \) which is not an \(m \)-isometry if we take \(T e_n = \omega_n e_{n+1} \) for \(n = 1, 2, \cdots \) where
\[
\omega_n = \sqrt{(n + 1)(n + 2) \cdots (n + m) + k}
\]
with \(0 \leq k \). If \(k = 0 \), then
\[
\omega_n = \sqrt{(n + 1)(n + 2) \cdots (n + m) + 0} = \sqrt{n + m}.
\]

This is the result of A. Athavale, Proposition 8 of [4].

3. Some properties of \(m \)-isometries

An operator \(T \in B(\mathcal{H}) \) is said to be power bounded if there exists a positive number \(M \) such that \(\|T^n\| \leq M \) for every \(n \in \mathbb{N} \).

Theorem 2. A power bounded \(m \)-isometry is an isometry.

To prove this result, we will use Berberian’s method (cf. [6], [12]).
Proposition (Lemma 2.7, [12]). Let \(\mathcal{H} \) be a complex Hilbert space. Then there exist a Hilbert space \(\mathcal{H}' \supset \mathcal{H} \) and a unital linear map \(\circ : B(\mathcal{H}) \to B(\mathcal{H}') \) such that

(i) \((ST)^\circ = S^oT^o, \) \((T^*)^\circ = (T^o)^* \), \(\|T\| = \|T^o\| \),

(ii) \(S \leq T \implies S^o \leq T^o \),

(iii) \(\sigma(T) = \sigma(T^o), \sigma_a(T) = \sigma_a(T^o) = \sigma_p(T^o) \).

We prepare notation and a lemma. For a unit vector \(x \in \mathcal{H} \), assume that \((T^* - I)x = a_1 x \). Let \(a_n = \langle \Delta T, n x \rangle \) and \(b_n = \| T^n x \|^2 \) for \(n = 1, 2, 3, \ldots \). Then we have the following lemma.

Lemma. For an operator \(T \in B(\mathcal{H}) \) with the above notation, it holds that

\[
(3.1) \quad b_n = a_n + \left(\frac{n}{n-1} \right) a_{n-1} + \left(\frac{n}{n-2} \right) a_{n-2} + \cdots + na_1 + 1.
\]

Proof. Note that

\[
b_1 = \|Tx\|^2 = \langle T^*Tx, x \rangle = \langle a_1 x + x, x \rangle = a_1 + 1.
\]

Since

\[
T^*T^2 = (T^*T^2 - 2T^*T + I) + 2(T^*T - I) + I = \Delta T, 2 + 2\Delta T, 1 + I,
\]

we have

\[
b_2 = \langle T^*T^2x, x \rangle = \langle \Delta T, 2x, x \rangle + 2\langle \Delta T, 1x, x \rangle + \langle x, x \rangle = a_2 + 2a_1 + 1.
\]

Hence (3.1) holds for \(n = 1, 2 \). Note that

\[
n^m = (t - 1 + 1)^n = (t - 1)^n + \left(\frac{n}{1} \right) (t - 1)^{n-1} + \left(\frac{n}{2} \right) (t - 1)^{n-2} + \cdots + n(t - 1) + 1.
\]

Hence

\[
T^{*m}T^n = \Delta T, n + \left(\frac{n}{1} \right) \Delta T, n-1 + \left(\frac{n}{2} \right) \Delta T, n-2 + \cdots + n\Delta T, n-1 + I
\]

and

\[
b_n = \langle T^{*m}T^n, x, x \rangle = a_n + \left(\frac{n}{1} \right) a_{n-1} + \left(\frac{n}{2} \right) a_{n-2} + \cdots + na_1 + 1
\]

This completes the proof. \(\square \)

Proof of Theorem \(\square \) Let \(T \) be a power bounded \(m \)-isometry. Since \(T^*T - I \) is self-adjoint, it suffices to show that

\[
\sigma(T^*T - I) = \sigma_a(T^*T - I) = \{0\}.
\]

Assume that there exists a non-zero real number \(a \in \sigma(T^*T - I) \). Since \(a \) belongs to the approximate point spectrum of \(T^*T - I \), by Berberian’s method we consider
an extension \mathcal{H}° of \mathcal{H} and the mapping $S \to S^\circ$ of $B(\mathcal{H})$ into $B(\mathcal{H}^\circ)$. Then a is an eigen-value of $T^*T^\circ - I^\circ$ and T° is also a power bounded m-isometry. For simplification, we denote T° by T. Since a is an eigen-value of $T^*T - I$, there exists a unit vector x such that $(T^*T - I)x = ax$. Hence
\[\langle (T^*T - I)x, x \rangle = \langle ax, x \rangle = a. \]

Let $a_1 = a$ and $a_n = \langle \Delta T_n x, x \rangle$. Then since T is an m-isometry, we have $a_m = a_{m+1} = \cdots = a_n = 0$ for $n > m$. By the Lemma, we have
\[\|T^n x\|^2 = \left(\frac{n}{m-1} \right) a_{m-1} + \left(\frac{n}{m-2} \right) a_{m-2} + \cdots + na_1 + 1. \]

Hence
\[\|T^n x\|^2 = a_{m-1} + \left(\frac{1}{n} \right) \left\{ \left(\frac{n}{m-2} \right) a_{m-2} + \cdots + na_1 + 1 \right\}. \]

Since T is power bounded, we have $a_{m-1} = 0$ by $n \to \infty$. Repeating this, we have
\[a_{m-1} = a_{m-2} = \cdots = a_1 = a = 0. \]

This is a contradiction, so the proof is complete. \hfill \Box

Patel (Corollary 2.8, [10]) proved that if T is a 2-isometry, then $1 \in \sigma(T^*T)$. That is, if T is a 2-isometry, then $0 \in \sigma(\Delta T, 1)$. We now generalize this result as follows.

Theorem 3. If T is an m-isometry for $m \geq 2$, then $0 \in \sigma(\Delta T, m-1)$.

Proof. For simplification, we denote $\Delta T, m-1$ by Δ. Assume that $0 \notin \sigma(\Delta)$. Since $\Delta T, m = T^* T \Delta, T - \Delta = 0$, it holds that $T^* T \Delta = \Delta$. Let $S = \Delta^{1/2} T \Delta^{-1/2}$. Then
\[S^* S = (\Delta^{-1/2} T^* \Delta^{1/2})(\Delta^{1/2} T \Delta^{-1/2}) = I. \]

Hence S is an isometry and $T = \Delta^{-1/2} S \Delta^{1/2}$. So T is similar to the isometry S. Since S is power bounded, T is an isometry by Theorem [8]. Hence $\Delta T, 1 = 0$, and so $\Delta T, m-1 = \Delta = 0$. This contradicts our assumption that $0 \notin \sigma(\Delta)$, so the proof is complete. \hfill \Box

Remark 2. Since Weyl’s theorem holds for an isometry, Weyl’s theorem holds for a power bounded m-isometry by Theorem [9] (cf. [3], [10]).

Finally we show the following result. For a 2-isometry, Patel proved it (Theorem 2.1, [10]).

Theorem 4. A power of an m-isometry is again an m-isometry.

Proof. Let T be an m-isometry, i.e.,
\[\Delta T, m = T^* m T^m - m T^* m-1 T^{m-1} + \cdots + (-1)^m I = 0. \]

We prove T^k is also an m-isometry. Write
\[(t^k - 1)^m = (t - 1)^m (t^{k-1} + t^{k-2} + \cdots + t + 1)^m \]
\[= (t^m - mt^{m-1} + \cdots + (-1)^m (a_{m(k-1)} t^{m(k-1)} + \cdots + a_1 t + a_0). \]
Hence we have

\[\Delta_{T^k,m} = \sum_{j=0}^{m(k-1)} a_j T^j \left(\Delta_{T^k,m} \right) T^j = 0. \]

So the proof is complete. \(\square \)

ACKNOWLEDGMENT

The authors would like to express their sincere thanks to the referee for a careful reading and much kind advice. The proofs became very simple because of the referee’s suggestions.

REFERENCES

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA 221-8686, JAPAN
E-mail address: chiym010@kanagawa-u.ac.jp

DEPARTMENT OF CONTENT AND CREATIVE DESIGN, KYUSHU UNIVERSITY, FUKUOKA 815-8540, JAPAN
E-mail address: ota@design.kyushu-u.ac.jp

DEPARTMENT OF MATHEMATICS, TOHOKU PHARMACEUTICAL UNIVERSITY, SENDAI 981-8558, JAPAN
E-mail address: tanahasi@tohoku-pharm.ac.jp

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use