Sheaves on $\mathbb {P}^1\times \mathbb {P}^1$, bigraded resolutions, and coadjoint orbits of loop groups
HTML articles powered by AMS MathViewer
- by Roger Bielawski and Lorenz Schwachhöfer
- Proc. Amer. Math. Soc. 141 (2013), 4155-4167
- DOI: https://doi.org/10.1090/S0002-9939-2013-11706-5
- Published electronically: August 20, 2013
- PDF | Request permission
Abstract:
We construct a canonical linear resolution of acyclic $1$-dimensional sheaves on $\mathbb {P}^1\times \mathbb {P}^1$ and discuss the resulting natural Poisson structure.References
- M. R. Adams, J. Harnad, and J. Hurtubise, Isospectral Hamiltonian flows in finite and infinite dimensions. II. Integration of flows, Comm. Math. Phys. 134 (1990), no. 3, 555–585. MR 1086744, DOI 10.1007/BF02098447
- M. R. Adams, J. Harnad, and J. Hurtubise, Darboux coordinates and Liouville-Arnol′d integration in loop algebras, Comm. Math. Phys. 155 (1993), no. 2, 385–413. MR 1230033, DOI 10.1007/BF02097398
- M. R. Adams, J. Harnad, and J. Hurtubise, Dual moment maps into loop algebras, Lett. Math. Phys. 20 (1990), no. 4, 299–308. MR 1077962, DOI 10.1007/BF00626526
- M. R. Adams, J. Harnad, and J. Hurtubise, Coadjoint orbits, spectral curves and Darboux coordinates, The geometry of Hamiltonian systems (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 22, Springer, New York, 1991, pp. 9–21. MR 1123273, DOI 10.1007/978-1-4613-9725-0_{2}
- M. R. Adams, J. Harnad, and E. Previato, Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalized Moser systems and moment maps into loop algebras, Comm. Math. Phys. 117 (1988), no. 3, 451–500. MR 953833, DOI 10.1007/BF01223376
- Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786479, DOI 10.1307/mmj/1030132707
- R. Bielawski and L. Schwachhöfer, ‘Pluricomplex geometry and hyperbolic monopoles’, arXiv:1104.2270. To appear in Comm. Math. Phys.
- Francesco Bottacin, Poisson structures on moduli spaces of sheaves over Poisson surfaces, Invent. Math. 121 (1995), no. 2, 421–436. MR 1346215, DOI 10.1007/BF01884307
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- J. C. Hurtubise and E. Markman, Surfaces and the Sklyanin bracket, Comm. Math. Phys. 230 (2002), no. 3, 485–502. MR 1937654, DOI 10.1007/s00220-002-0700-9
- J. C. Hurtubise and E. Markman, Elliptic Sklyanin integrable systems for arbitrary reductive groups, Adv. Theor. Math. Phys. 6 (2002), no. 5, 873–978 (2003). MR 1974589, DOI 10.4310/ATMP.2002.v6.n5.a4
- Diane Maclagan and Gregory G. Smith, Multigraded Castelnuovo-Mumford regularity, J. Reine Angew. Math. 571 (2004), 179–212. MR 2070149, DOI 10.1515/crll.2004.040
- J. Moser, Geometry of quadrics and spectral theory, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, New York-Berlin, 1980, pp. 147–188. MR 609560
- Shigeru Mukai, Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surface, Invent. Math. 77 (1984), no. 1, 101–116. MR 751133, DOI 10.1007/BF01389137
- Michael K. Murray and Michael A. Singer, On the complete integrability of the discrete Nahm equations, Comm. Math. Phys. 210 (2000), no. 2, 497–519. MR 1776842, DOI 10.1007/s002200050789
- Daniel Quillen, Quaternionic algebra and sheaves on the Riemann sphere, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 194, 163–198. MR 1634734, DOI 10.1093/qjmath/49.194.163
- G. Sanguinetti and N. M. J. Woodhouse, The geometry of dual isomonodromic deformations, J. Geom. Phys. 52 (2004), no. 1, 44–56. MR 2085662, DOI 10.1016/j.geomphys.2004.01.005
- A. N. Tyurin, Symplectic structures on the moduli spaces of vector bundles on algebraic surfaces with $p_g>0$, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 4, 813–852, 896 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 1, 139–177. MR 966986, DOI 10.1070/IM1989v033n01ABEH000818
Bibliographic Information
- Roger Bielawski
- Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- Address at time of publication: Institut für Differentialgeometrie, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
- Email: R.Bielawski@ed.ac.uk
- Lorenz Schwachhöfer
- Affiliation: Fakultät für Mathematik, TU Dortmund, D-44221 Dortmund, Germany
- Received by editor(s): September 17, 2011
- Received by editor(s) in revised form: February 9, 2012
- Published electronically: August 20, 2013
- Communicated by: Chuu-Lian Terng
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 4155-4167
- MSC (2010): Primary 14F05, 14H40, 14H70, 22E67, 37K10
- DOI: https://doi.org/10.1090/S0002-9939-2013-11706-5
- MathSciNet review: 3105858