A UNICITY THEOREM FOR MEROMORPHIC MAPS
OF A COMPLETE KÄHLER MANIFOLD
INTO \(\mathbb{P}^n(\mathbb{C}) \) SHARING HYPERSURFACES

MIN RU AND SURAIZOU SOGOME

(Communicated by Mei-Chi Shaw)

Abstract. In this paper, we give a unicity theorem for meromorphic maps of an \(m \)-dimensional complete Kähler manifold \(M \), whose universal covering is a ball in \(\mathbb{C}^m \), into \(\mathbb{P}^n(\mathbb{C}) \), sharing the hypersurfaces in general position in \(\mathbb{P}^n(\mathbb{C}) \), where the maps satisfy a certain growth condition.

1. Introduction

In 1926, R. Nevanlinna proved that two distinct nonconstant meromorphic functions \(f, g \) on the complex plane \(\mathbb{C} \) cannot have the same pre-images for more than four distinct values. The generalization of Nevanlinna’s result to the case of meromorphic maps of a complete Kähler manifold \(M \), whose universal covering is a ball in \(\mathbb{C}^m \), into \(\mathbb{P}^n(\mathbb{C}) \) satisfying a certain growth condition (see condition \((C_\rho) \) below) and sharing hyperplanes is given by Fujimoto (see [5]). In this paper, by applying the results obtained in [11] by the authors, we extend Fujimoto’s result to the case where the meromorphic maps share hypersurfaces instead of hyperplanes.

Let \(M \) be an \(m \)-dimensional connected Kähler manifold with Kähler form \(\omega \) and let \(f \) be a meromorphic map of \(M \) into \(\mathbb{P}^n(\mathbb{C}) \). For \(\rho \geq 0 \), we say that \(f \) satisfies condition \((C_\rho) \) if there exists a nonzero bounded continuous real-valued function \(h \) on \(M \) such that

\[
\rho \Omega_f + dd^c \log h^2 \geq \text{Ric}(\omega),
\]

where \(\Omega_f \) denotes the pull-back of the Fubini-Study metric form on \(\mathbb{P}^n(\mathbb{C}) \) by \(f \),

\[
d = \partial + \bar{\partial}, \quad d^c = (\sqrt{-1}/4\pi)(\bar{\partial} - \partial), \quad \text{and} \quad \text{Ric}(\omega) \text{ is the Ricci form of } \omega.
\]

The main theorem in this paper is as follows.

Main Theorem. Let \(M \) be a complete connected Kähler manifold whose universal covering is biholomorphic to either \(\mathbb{C}^m \) or the unit ball in \(\mathbb{C}^m \). Let \(f \) and \(g \) be algebraically nondegenerate meromorphic maps of \(M \) into \(\mathbb{P}^n(\mathbb{C}) \). Assume that \(f \) and \(g \) satisfy condition \((C_\rho) \) and that there exist \(q \) hypersurfaces \(D_j, j = 1, \ldots, q \), of
degree d_j located in general position in $\mathbb{P}^n(\mathbb{C})$ such that

\begin{enumerate}[(i)]
 \item $f = g$ on $\bigcup_{j=1}^{q} (f^{-1}(D_j) \cup g^{-1}(D_j))$,
 \item $q > n + 1 + \frac{2n(L - 1) + 1}{d} + \frac{\rho L(L - 1)}{d}$,
\end{enumerate}

where $L = \left(\frac{N + n}{n} \right)$ with $N = 2d^2(d + 1)n(n + 1)(2^n - 1) + nd$, and $d = \text{lcm}\{d_1, d_2, ..., d_q\}$. Then $f \equiv g$.

From the proof we will easily see that if, in addition, we assume that $\dim(f^{-1}(D_i) \cap g^{-1}(D_j)) \leq m - 2$ for $i \neq j$, $1 \leq i, j \leq q$, we have the following result.

Theorem 1.1. Let M be a complete connected Kähler manifold whose universal covering is biholomorphic to either \mathbb{C}^m or the unit ball in \mathbb{C}^m. Let f and g be algebraically nondegenerate meromorphic maps of M into $\mathbb{P}^n(\mathbb{C})$. Assume that f and g satisfy condition (C_p) and that there exist q hypersurfaces D_j, $j = 1, ..., q$, of degree d_j located in general position in $\mathbb{P}^n(\mathbb{C})$ such that

\begin{enumerate}[(i)]
 \item $f = g$ on $\bigcup_{j=1}^{q} (f^{-1}(D_j) \cup g^{-1}(D_j))$,
 \item $\dim(f^{-1}(D_i) \cap f^{-1}(D_j)) \leq m - 2$, for $i \neq j, 1 \leq i, j \leq q$,
 \item $q > n + 1 + \frac{2(L - 1) + 1}{d} + \frac{\rho L(L - 1)}{d}$,
\end{enumerate}

where $L = \left(\frac{N + n}{n} \right)$ with $N = 2d^2(d + 1)n(n + 1)(2^n - 1) + nd$, and $d = \text{lcm}\{d_1, d_2, ..., d_q\}$. Then $f \equiv g$.

In the case $M = \mathbb{C}^m$, we can take the flat metric whose Ricci form vanishes. Therefore all meromorphic maps of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$ satisfy condition (C_0), and we get the following version of the result of Dulock and Ru in \cite{12}.

Corollary 1.2. Let f and g be algebraically nondegenerate meromorphic maps of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$. Assume that there exist q hypersurfaces D_j, $j = 1, ..., q$, of degree d_j located in general position in $\mathbb{P}^n(\mathbb{C})$ such that

\begin{enumerate}[(i)]
 \item $f = g$ on $\bigcup_{j=1}^{q} (f^{-1}(D_j) \cup g^{-1}(D_j))$,
 \item $q > n + 1 + \frac{2n(L - 1) + 1}{d}$,
\end{enumerate}

where $L = \left(\frac{N + n}{n} \right)$ with $N = 2d^2(d + 1)n(n + 1)(2^n - 1) + nd$, and $d = \text{lcm}\{d_1, d_2, ..., d_q\}$. Then $f \equiv g$.

In the case when M is a ball in \mathbb{C}^m but without the growth assumption for f and g (i.e. we do not assume that both f and g satisfy condition (C_p)), we also have the following result.
Theorem 1.3. Let \(f \) and \(g \) be algebraically nondegenerate meromorphic maps of the unit ball \(B(1) \subset \mathbb{C}^m \) into \(\mathbb{P}^n(\mathbb{C}) \). Assume that, for a fixed \(r_0 \) with \(0 < r_0 < 1 \),
\[
\lambda := \lim_{r \to 1} \sup \frac{\log(1/(1-r))}{T_f(r, r_0) + T_g(r, r_0)} < \infty.
\]
Assume that there exist \(q \) hypersurfaces \(D_j, j = 1, \ldots, q \), of degree \(d_j \) located in general position in \(\mathbb{P}^n(\mathbb{C}) \) such that
\[
(i) \quad f = g \quad \text{on} \quad \bigcup_{j=1}^{q} (f^{-1}(D_j) \cup g^{-1}(D_j)),
\]
\[
(ii) \quad q > n + 1 + \lambda L(L-1) + \frac{2n(L-1)+1}{d},
\]
where \(L = \left(\frac{N+n}{n} \right) \) with \(N = 2d^2(d+1)n(n+1)(2^n-1) + nd \), and \(d = \text{lcm}\{d_1, d_2, \ldots, d_q\} \). Then \(f \equiv g \).

2. **Preliminaries**

Let \(h \) be a nonconstant holomorphic function on an open domain \(G \subset \mathbb{C}^m \). For a set \(\alpha = (\alpha_1, \ldots, \alpha_m) \) of integers \(\alpha_i \geq 0 \), we set \(|\alpha| = \alpha_1 + \cdots + \alpha_m \) and \(D^\alpha h = D_1^{\alpha_1} \cdots D_m^{\alpha_m} h \), where \(D_1 h = (\partial/\partial z_1)h \), for \(i = 1, \ldots, m \). We define \(\nu^0_h : G \to \mathbb{Z} \) by
\[
\nu^0_h(z) := \max\{k : D^\alpha h(z) = 0 \text{ for all } \alpha \text{ with } |\alpha| < k\} \quad (z \in G).
\]
By a divisor on a domain \(G \) in \(\mathbb{C}^m \) we mean a map \(\nu \) of \(G \) into \(\mathbb{Z} \) such that, for each \(z_0 \in G \), there are nonzero holomorphic functions \(h \) and \(g \) on a connected neighborhood \(U(\subset G) \) of \(z_0 \) so that \(\nu(z) = \nu^0_h(z) - \nu^0_g(z) \) for each \(z \in U \) outside an analytic set of dimension \(\leq m - 2 \). Two divisors are regarded as the same if they are identical outside an analytic set of dimension \(\leq m - 2 \). Take a nonzero meromorphic function \(\varphi \) on a domain \(G \) in \(\mathbb{C}^m \). For each \(z_0 \in G \), we choose nonzero meromorphic functions \(g \) and \(h \) on a neighborhood \(U(\subset G) \) of \(z_0 \) such that \(\varphi = \frac{g}{h} \) on \(U \) and \(\dim(g^{-1}(0) \cup h^{-1}(0)) \leq m - 2 \). We define \(\nu^\infty_{\varphi} := \nu^0_h, \quad \nu^\varphi_{\varphi} := \nu^0_{g-ah} \) for \(a \in \mathbb{C} \) and \(\nu^\varphi_{\varphi} = \nu^\varphi_{\varphi} - \nu^\infty_{\varphi} \), which are independent of the choices of \(h \) and \(g \).

Let \(f \) be a meromorphic map of \(B(0) \subset \mathbb{C}^m \) into \(\mathbb{P}^n(\mathbb{C}) \), \(0 < R_0 \leq \infty \). We take holomorphic functions \(f_0, f_1, \ldots, f_n \) such that \(I_f := \{z \in B(0) : f_0(z) = \cdots = f_n(z) = 0\} \) is of dimension at most \(m - 2 \) and \(f(z) = (f_0(z) : \cdots : f_n(z)) \) on \(B(0) - I_f \) in terms of homogeneous coordinates \((w_0 : \cdots : w_m)\) on \(\mathbb{P}^n(\mathbb{C}) \). We call such representation \(f(z) = (f_0(z) : \cdots : f_n(z)) \) a reduced representation of \(f \). For \(z = (z_1, \ldots, z_m) \in \mathbb{C}^m \) we set \(||z|| = (|z_1|^2 + \cdots + |z_m|^2)^{1/2} \) and define \(B(r) = \{z \in \mathbb{C}^m : ||z|| < r\} \), \(S(r) = \{z \in \mathbb{C}^m : ||z|| = r\} \) for \(0 < r \leq +\infty \), where we mean \(B(\infty) = \mathbb{C}^m \) and \(S(\infty) = \emptyset \). Define
\[
\sigma_m := d^m \log ||z||^2 \wedge (dd^c \log ||z||^2)^{m-1} \quad \text{on } \mathbb{C}^m - \{0\} \quad \text{and} \quad v_l := (dd^c ||z||^2)^l, \quad 0 \leq l \leq m.
\]
The pullback of the normalized Fubini-Study metric form \(\Omega \) on \(\mathbb{P}^n(\mathbb{C}) \) by \(f \) is given by
\[
\Omega_f = dd^c \log ||f||^2,
\]
where \(\|f\|^2 := |f_0|^2 + \cdots + |f_n|^2 \). Fix \(r_0 < R_0 \); the characteristic function of \(f \) is defined by

\[
T_f(r, r_0) = \int_{r_0}^{r} \frac{dt}{t^{2m-1}} \int_{B(t)} \Omega_f \wedge v_{m-1} \quad (0 < r_0 < r < R_0).
\]

We then have (see [13])

\[
(2.1) \quad T_f(r, r_0) = \int_{r_0(r)} \log \|f\|\sigma_m - \int_{S(r_0)} \log \|f\|\sigma_m.
\]

Let \(\mu_0 \) be a positive integer or \(\infty \) and \(\nu \) be divisors on a domain \(B(R_0) \subset \mathbb{C}^m \). Set \(|\nu| = \{ z \in B(R_0): \nu(z) \neq 0 \} \). We define the counting function of \(\nu \) truncated by \(\mu_0 \) by

\[
N_\nu^{[\mu_0]}(r, r_0) = \int_{r_0}^{r} \frac{n^{[\mu_0]}(t)}{t^{2m-1}} dt,
\]

where

\[
n^{[\mu_0]}(t) = \int_{|\nu| \cap B(t)} \min\{ \nu, \mu_0 \} v_{m-1} \quad \text{for } m \geq 2 \quad \text{and} \quad n^{[\mu_0]}(t) = \sum_{|z| \leq t} \min\{ \nu(z), \mu_0 \} \quad \text{for } m = 1.
\]

For a meromorphic function \(\phi \) on \(B(R_0) \), we may regard \(\phi \) as a meromorphic map into \(\mathbb{P}^1(\mathbb{C}) \). We define

\[
N_\phi^0(r, r_0) = \int_{r_0}^{r} \frac{n^0_\phi(t)}{t^{2m-1}} dt,
\]

where

\[
n^0_\phi(t) = \int_{|\nu| \cap B(t)} \nu^0_\phi v_{m-1} \quad \text{for } m \geq 2 \quad \text{and} \quad n^0_\phi(t) = \sum_{|z| \leq t} \nu^0_\phi(z) \quad \text{for } m = 1.
\]

Let \(f \) and \(g \) be algebraically nondegenerate meromorphic maps from \(B(R_0) \subset \mathbb{C}^m \) \((0 < R_0 \leq \infty)\) into \(\mathbb{P}^n(\mathbb{C}) \). For a positive integer \(N \), let \(V_N \) denote the space of homogeneous polynomials of degree \(N \) in \(\mathbb{C}[X_0, \ldots, X_n] \) and fix a (arbitrary) basis \(\phi_1, \ldots, \phi_l \), where \(l = \dim V_N \). Let

\[
(2.2) \quad F = [\phi_1(f) : \cdots : \phi_l(f)] \quad \text{and} \quad G = [\phi_1(g) : \cdots : \phi_l(g)].
\]

Then \(F, G: B(R_0) \to \mathbb{P}^{l-1}(\mathbb{C}) \) are linearly nondegenerate. Hence (see Proposition 3.2 in [11]) there exist \(\alpha_j = (\alpha_{j1}, \ldots, \alpha_{jm}) \) (resp. \(\beta_j = (\beta_{j1}, \ldots, \beta_{jm}) \)) with \(\alpha_{ji} \geq 0 \) being integers (resp. \(\beta_{ji} \geq 0 \) being integers), \(|\alpha| := \alpha_{j1} + \cdots + \alpha_{jm} \leq l-1 \) for \(1 \leq j \leq l \) (resp. \(|\beta| \leq l-1 \) for \(1 \leq j \leq l \)), and \(|\alpha| + \cdots + |\alpha| \leq l(l-1)/2 \) (resp. \(|\beta| + \cdots + |\beta| \leq l(l-1)/2 \)) such that both

\[
(2.3) \quad W_{\alpha_1, \ldots, \alpha_l}(F) := \det \left(D^{\alpha_1} F, \ldots, D^{\alpha_l} F \right), \quad W_{\beta_1, \ldots, \beta_l}(G) := \det \left(D^{\beta_1} G, \ldots, D^{\beta_l} G \right)
\]

are not identically zero on \(B(R_0) \). Let \(D_1, \ldots, D_q \) be hypersurfaces in \(\mathbb{P}^n(\mathbb{C}) \) of degree \(d_1, \ldots, d_q \), located in general position. Let \(Q_j, 1 \leq j \leq q \), be the homogeneous polynomials defining \(D_j \). Replacing \(Q_j \) by \(Q_j^{d/d_j} \) if necessary, where \(d = \text{lcm}\{d_1, \ldots, d_q\} \), we can assume that \(Q_1, \ldots, Q_q \) have the same degree \(d \).
Choose distinct $\gamma_{i_1}, \ldots, \gamma_{i_n} \in \{Q_1, \ldots, Q_q\}$. Arrange the \(n\)-tuples by lexicographic order and consider the \(n\)-tuples \(i = (i_1, \ldots, i_n)\) of nonnegative integers with \(\sigma(i) := i_1 + \cdots + i_n \leq N/d\). Define the spaces
\[
W_i = W_{N,i} := \sum_{\{\epsilon\} \geq i} \gamma_{i_1}^{\epsilon_1} \cdots \gamma_{i_n}^{\epsilon_n} V_{N-d\sigma(i)}.
\]
Clearly, \(W_{(0,\ldots,0)} = V_N, W_i \supset W_{i'}\) if \(i' \geq i\), and \(\{W_i\}\) defines a filtration of \(V_N\). Let
\[
\Delta_i := \dim \frac{W_i}{W_{i'}},
\]
where \(i' > i\) are consecutive \(n\)-tuples with \(W_{i'} \subset W_i\). Then it is known (see Lemma 4.1 in [11]) that each \(\Delta_i\) is independent of the choice of \(\gamma_{i_1}, \ldots, \gamma_{i_n}\). Hence
\[
\Delta := \frac{1}{n} \sum_i \Delta_i \sigma(i)
\]
is a positive integer depending only on \(D_1, \ldots, D_q\). The following lemma gives the estimate of \(\Delta\).

Lemma 2.1. With \(N = 2d^2(d + 1)n(n + 1)(2^n - 1) + nd\) and \(L = \binom{N}{n}\), we have
\[
\frac{LN}{\Delta} \leq d(n + 1) + \frac{1}{2d}.
\]

The proof of the above lemma is given by the same argument by setting \(\epsilon = 1/d\) as in the proof of [11] Lemma 4.3.

Proposition 2.2 ([11] Proposition 4.4). Set
\[
\psi = \frac{W_{\alpha^1 \cdots \alpha^l}(F)}{Q^\Delta_1(f) \cdots Q^\Delta_q(f)}.
\]
Then
\[
\nu^\infty_{\psi} \leq \sum_{j=1}^q \Delta \min\{\nu^\infty_{Q_j(f)}, l - 1\}
\]
outside an analytic set of codimension at least two.

Proposition 2.3 (See (4.21) on page 1158 in [11]). Set \(l_0 = |\alpha^1| + \cdots + |\alpha^l|\) and take \(t, p'\) with \(0 < t_0 < p' < 1\). Then, for fixed \(r_0\) with \(0 < r_0 < R_0\) there exists a positive constant \(K\) such that for \(r_0 < r < R < R_0\),
\[
\int_{S(r)} \left| z^{\alpha^1 + \cdots + \alpha^l} \frac{W_{\alpha^1 \cdots \alpha^l}(f)}{Q^\Delta_1(f) \cdots Q^\Delta_q(f)} \right|^t \|f\|^{(dq\Delta - lN)} \sigma_m \leq K \left(\frac{R^{2m-1}}{R - r} T_F(R, r_0) \right)^{p'}.
\]

Theorem 2.4. Let \(f : B(R_0) \rightarrow \mathbb{P}^n(\mathbb{C}), 0 < R_0 \leq \infty\), be an algebraically nondegenerate meromorphic map and \(D_1, \ldots, D_q\) be hypersurfaces of degree \(d_j, 1 \leq j \leq q\), in \(\mathbb{P}^n(\mathbb{C})\) located in general position. Then, with \(N = 2d^2(d + 1)n(n + 1)(2^n - 1) + nd\) and \(L = \binom{N}{n}\),
\[
(q - (n + 1 + (1/d))) T_f(r, r_0) \leq \sum_{j=1}^q d_j^{-1} N_j^{[L-1]} (r, D_j) + S_f(r),
\]
where
\[
\Delta_j = \frac{N_j}{n}.
\]
where $S_f(r)$ is evaluated as follows:

1. In the case $R_0 < \infty$,
 \[
 S_f(r) \leq \frac{L(L-1)}{2} \log^+ \frac{1}{R_0 - r} + K \log^+ T_f(r, r_0)
 \]
 for every $r \in [0, R_0)$ excluding a set E with $\int_E \frac{1}{R_0 - t} dt < \infty$, where K is a positive constant.

2. In the case $R_0 = \infty$,
 \[
 S_f(r) \leq K(\log^+ T_f(r, r_0) + \log r)
 \]
 for every $r \in [0, \infty)$ excluding a set E' with $\int_{E'} dt < \infty$, where K is a positive constant.

Remark 2.5. If $R_0 = \infty$ and $\lim_{r \to \infty} T_f(r, r_0)/\log r < \infty$, then we can choose $S_f(r)$ to be bounded.

Proof. The proof is given by the same argument by taking $\epsilon = 1/d$ as in the proof of [11, Theorem 4.5] except for the following modifications in the case $R_0 > +\infty$:

From Proposition 2.3, for $0 < tl_0 < p' < 1$, we have

\begin{equation}
\int_{S(r)} z^{\alpha_1 + \cdots + \alpha_L} \frac{W_{\alpha_1, \ldots, \alpha_L}(F)}{Q_1^\alpha(f) \cdots Q_q^\Delta(f)} t^\ell \|f\|^{\ell(dq - LN)} \sigma_m \leq K \left(\frac{R^{2m-1}}{R - r} T_F(R, r_0) \right)^{p'},
\end{equation}

for $r_0 < r < R < R_0$. Hence, by virtue of the concavity of the logarithm, the above inequality implies that

\[
\int_{S(r)} \log |z^{\alpha_1 + \cdots + \alpha_L}| \sigma_m + \int_{S(r)} \log \left| \frac{W_{\alpha_1, \ldots, \alpha_L}(F)}{Q_1^\alpha(f) \cdots Q_q^\Delta(f)} \right| \sigma_m \\
+ (dq \triangle - NL) \int_{S(r)} \log \|f\| \sigma_m + \leq \frac{p'}{t} \left(\log \frac{1}{R - r} + \log^+ T_F(R, r_0) \right) + O(1),
\]

for $r_0 < r < R < R_0$. Since $l_0 = |\alpha_1| + \cdots + |\alpha_L| \leq L(L-1)/2$, by letting $(p'/t) > l_0$ approach l_0, we get

\[
\int_{S(r)} \log |z^{\alpha_1 + \cdots + \alpha_L}| \sigma_m + \int_{S(r)} \log \left| \frac{W_{\alpha_1, \ldots, \alpha_L}(F)}{Q_1^\alpha(f) \cdots Q_q^\Delta(f)} \right| \sigma_m \\
+ (dq \triangle - NL) \int_{S(r)} \log \|f\| \sigma_m \leq \frac{L(L-1)}{2} \left(\log \frac{1}{R - r} + \log^+ T_F(R, r_0) \right) + O(1).
\]

The rest of the arguments follow in the proof of [11, Theorem 4.5].

\[\square\]

3. The proof of the Main Theorem for particular cases

In this section, we prove Corollary 1.2 and Theorem 1.3 stated in section 1.

Proof of Corollary 1.2 Assume that $f \not\equiv g$. Fix a reduced representation (f_0, f_1, \ldots, f_n) of f and a reduced representation (g_0, g_1, \ldots, g_n) of g. We may choose distinct indices i_0 and j_0 such that

\begin{equation}
\chi := f_{i_0} g_{j_0} - f_{j_0} g_{i_0}
\end{equation}
is not identically zero. Applying Theorem 2.4 to the maps \(f \) and \(g \) (without loss of generality, we assume that \(d_1 = \cdots = d_q = d \)), we get

\[
\left(q - (n + 1 + (1/d)) \right) T_f(r, r_0) \leq \sum_{j=1}^{q} d^{-1} N_f^{[L-1]}(r, D_j) + S_f(r),
\]

\[
\left(q - (n + 1 + (1/d)) \right) T_g(r, r_0) \leq \sum_{j=1}^{q} d^{-1} N_g^{[L-1]}(r, D_j) + S_g(r),
\]

where \(S_f(r) \) and \(S_g(r) \) satisfy

\[
S_f(r) \leq_{exc} K(\log^+ T_f(r, r_0) + \log r) \quad \text{and} \quad S_g(r) \leq_{exc} K(\log^+ T_g(r, r_0) + \log r),
\]

where \(\leq_{exc} \) means the inequality holds for all \(r \in [0, \infty) \) excluding a set \(E' \) with \(\int_{E'} dt < \infty \). Adding these two inequalities gives

\[
\left(q - (n + 1 + (1/d)) \right) \left(T_f(r, r_0) + T_g(r, r_0) \right) \leq \frac{1}{d} \sum_{j=1}^{q} (N_f^{[L-1]}(r, D_j) + N_g^{[L-1]}(r, D_j)) + S_g(r) + S_f(r).
\]

Using the fact that the \(D_j \)'s are in general position, from assumption (i) in Corollary 1.2 we have trivially \(\sum_{j=1}^{q} (N_f^{[L-1]}(r, D_j) + N_g^{[L-1]}(r, D_j)) \leq 2n(L-1)N(r, A) \), where \(A = \bigcup_{j=1}^{q} (f^{-1}(D_j) \cup g^{-1}(D_j)) \). Hence,

\[
(3.2) \quad \left(q - (n + 1 + (1/d)) \right) \left(T_f(r, r_0) + T_g(r, r_0) \right) \leq \frac{2n(L-1)}{d} N(r, A) + S_g(r) + S_f(r).
\]

We now claim that

\[
N(r, A) \leq T_f(r_0, r) + T_g(r_0, r) + O(1).
\]

Indeed, consider the map \(\chi := f_i g_{j_0} - f_{j_0} g_i \) defined above. If \(z \in A \), then \(f(z) = g(z) \) from assumption (i) in Corollary 1.2 and so \(\chi(z) = 0 \). It then follows that \(N(r, A) \leq N^0_\chi(r, r_0) \). By the First Main Theorem of Nevanlinna,

\[
N^0_\chi(r, r_0) \leq T_\chi(r, r_0) + O(1) \leq T_f(r, r_0) + T_g(r, r_0) + O(1).
\]

The claim then follows.

Therefore (3.2) gives

\[
\left(q - (n + 1 + (1/d)) \right) \left(T_f(r, r_0) + T_g(r, r_0) \right) \leq \frac{2n(L-1)}{d} \left(T_f(r, r_0) + T_g(r, r_0) \right) \]

or

\[
(3.3) \quad \left(q - (n + 1 + (1/d)) - \frac{2n(L-1)}{d} \right) \leq \frac{S_g(r) + S_f(r)}{T_f(r, r_0) + T_g(r, r_0)}.
\]

In the case that \(f, g \) are rational, then, as in Remark 2.5 \(S_f(r) \) and \(S_g(r) \) can be taken to be bounded. Thus

\[
\lim_{r \to \infty} \frac{S_f(r) + S_g(r)}{T_f(r, r_0) + T_g(r, r_0)} = 0,
\]
and hence \(q \leq n + 1 + \frac{2n(L-1)+1}{d} \), which leads to a contradiction. If either \(f \) or \(g \) is transcendental, then
\[
\lim_{r \to \infty} \frac{\log r}{T_f(r, r_0) + T_g(r, r_0)} = 0.
\]
On the other hand,
\[
S_f(r) \leq_{exc} K(\log^+ T_f(r, r_0) + \log r) \quad \text{and} \quad S_g(r) \leq_{exc} K(\log^+ T_g(r, r_0) + \log r),
\]
so
\[
\lim_{r \to \infty} \inf \frac{S_f(r) + S_g(r)}{T_f(r, r_0) + T_g(r, r_0)} = 0.
\]
This again implies that \(q \leq n + 1 + \frac{2n(L-1)+1}{d} \), which leads to a contradiction. This completes the proof of Corollary 1.2.

Proof of Theorem 1.3 The proof is similar to the above argument. Assume that \(f \not\equiv g \). Conclusion (1) of Theorem 2.4 implies that there exists a subset \(E \) of \([0,1)\) such that
\[
\int_E (1-r)^{-1} dr < \infty \quad \text{and, for every } r \not\in E,
\]
\[
S_f(r) + S_g(r) \leq L(L-1) \log(1/(1-r)) + K \log^+(T_f(r, r_0) + T_g(r, r_0)).
\]
From this and (3.3), we conclude that
\[
(q - (n + 1 + (1/d)) - \frac{2n(L-1)}{d}) \leq L(L-1) \liminf_{r \to 1, r \not\in E} \frac{\log(1/(1-r)) + K \log^+(T_f(r, r_0) + T_g(r, r_0))}{T_f(r, r_0) + T_g(r, r_0)}
\]
\[
\leq L(L-1) \limsup_{r \to 1} \frac{\log(1/(1-r))}{T_f(r, r_0) + T_g(r, r_0)} \leq \lambda L(L-1).
\]
Thus
\[
q \leq n + 1 + \frac{2n(L-1)+1}{d} + \lambda L(L-1),
\]
which contradicts assumption (ii) of Theorem 1.3. This completes the proof.

Remark 3.1. As is easily seen from the above proof, the quantity \(\lambda \) in the conclusion of Theorem 1.3 can be replaced by the least upper bound of the quantities \(\bar{\lambda} \) such that
\[
\bar{\lambda} = \liminf_{r \to 1, r \not\in E} \frac{\log(1/(1-r))}{T_f(r, r_0) + T_g(r, r_0)}
\]
for some subset \(E \) of \([0,1)\) with \(\int_E (1-r)^{-1} dr < \infty \).

4. **Proof of the Main Theorem**

Proof. We now proceed to prove the Main Theorem. By lifting \(f \) and \(g \) to the universal covering of \(M \) if necessary, we may assume that \(M = B(R_0)(\subset \mathbb{C}^m) \) with \(0 < R_0 \leq \infty \). The case when \(R_0 = \infty \) (i.e. \(M = \mathbb{C}^m \)) is nothing but Corollary 1.2 and so it suffices to study the case \(M = B(1) \). Moreover, by virtue
of Remark 3.1 the Main Theorem is true unless there exists a subset E of $[0,1)$ with $\int_{E} (1 - r)^{-1} dr < \infty$ and

$$\limsup_{r \to 1, r \notin E} \frac{T_f(r, r_0) + T_g(r, r_0)}{\log(1/(1 - r))} < \infty.$$

We note that by the same argument as in the proof of [4, Proposition 5.5], (4.1) indeed implies that there exists a positive constant K such that

$$T_f(r, r_0) + T_g(r, r_0) \leq K \log \frac{1}{1 - r} \quad (0 < r_0 \leq r < 1).$$

Assuming (4.2), we shall show that it will lead to a contradiction if $f \not\equiv g$.

Let F, G be the meromorphic maps of $B(1) \subset \mathbb{C}^m$ into $\mathbb{P}^{L-1}(\mathbb{C})$ defined in (2.2). Let α^j and $\beta^j, j = 1, \ldots, L$, be m-tuples of nonnegative integers with $|\alpha^j| \leq L - 1$, $|\beta^j| \leq L - 1$ for $1 \leq j \leq L$, and $|\alpha^1| + \cdots + |\alpha^L| \leq L(L - 1)/2$, $|\beta^1| + \cdots + |\beta^L| \leq L(L - 1)/2$ such that $W_{\alpha^1, \ldots, \alpha^L}(F) \neq 0$ and $W_{\beta^1, \ldots, \beta^L}(G) \neq 0$, where $W_{\alpha^1, \ldots, \alpha^L}(F)$ and $W_{\beta^1, \ldots, \beta^L}(G)$ are defined in (2.3). Set $\phi := z^{\alpha^1+\cdots+\alpha^L} \Phi$ and $\psi := z^{\beta^1+\cdots+\beta^L} \Psi$, where

$$\Phi = \frac{W_{\alpha^1, \ldots, \alpha^L}(F)}{Q_1^\Delta(f) \cdots Q_q^\Delta(f)} \quad \text{and} \quad \Psi = \frac{W_{\beta^1, \ldots, \beta^L}(G)}{Q_1^\Delta(g) \cdots Q_q^\Delta(g)}.$$

We fix a reduced representation (f_0, f_1, \ldots, f_n) of f and a reduced representation (g_0, g_1, \ldots, g_n) of g. Since $f \not\equiv g$, we may choose distinct indices i_0 and j_0 such that

$$\chi := f_{i_0}g_{j_0} - f_{j_0}g_{i_0} \neq 0.$$

Notice that for a point $p \in f^{-1}(D_j) \subset \bigcup_{j=1}^{q} (f^{-1}(D_j) \cup g^{-1}(D_j))$, $f(p) = g(p)$. Thus $\chi(p) = 0$. Furthermore, from Proposition 2.2 by noticing that at $p \in B(1)$ there are at most $n Q_j$’s with $Q_j(f)(p) = 0$ due to the assumption that D_1, \ldots, D_q are in general position, we have $\nu_{\phi}^\Delta \leq \Delta n(L - 1)\nu_{\phi}^0$ and $\nu_{\psi}^\Delta \leq \Delta n(L - 1)\nu_{\psi}^0$, outside an analytic set of codimension ≥ 2. It then follows that, outside an analytic set of codimension ≥ 2, the functions $\phi^\Delta \chi^{\Delta n(L-1)}$ and $\psi^\Delta \chi^{\Delta n(L-1)}$ are both holomorphic on $B(1)$. Therefore if we let

$$t := \frac{\rho}{dq \Delta - LN - 2 \Delta n(L - 1)}$$

and

$$u := t \log |\phi^\Delta \psi^\Delta|^2 \Delta n(L-1),$$

then u is plurisubharmonic on $B(1)$ outside an analytic set of codimension ≥ 2. From the assumption that both f and g satisfy condition (C_p), there are continuous plurisubharmonic functions u_1, u_2 on $B(1)$ such that

$$e^{u_1} \det(h_{ij})^{1/2} \leq ||f||^\rho,$$

$$e^{u_2} \det(h_{ij})^{1/2} \leq ||g||^\rho.$$

Since $\rho + 2 \Delta t n(L - 1) = t(dq \Delta - LN)$ and noticing that $|\chi| \leq 2 ||f|| ||g||$, we obtain

$$\det(h_{ij})e^{u_1 + u_1 + u_2} \leq ||\phi^t \psi^t||^2 \chi^{2\Delta t n(L-1)} ||f||^\rho ||g||^\rho$$

$$\leq K ||\phi^t \psi^t||^\rho ||f||^{\rho + 2n t n(L - 1)} ||g||^{\rho + 2n t n(L - 1)}$$

$$= K ||\phi^t \psi^t||^\rho ||f||^{t(dq \Delta - LN)} ||g||^{t(dq \Delta - LN)}$$
for some constant K. Note that the volume form on $B(1)$ is given by

$$dV := c_m \det(h_{ij}) v_m;$$

therefore,

$$\int_{B(1)} e^{u+u_1+u_2} dV \leq K \int_{B(1)} \|\tilde{\phi}\|^{t(dq\triangle - LN)} \|f\|^{t(dq\triangle - LN)} v_m.$$

Thus, by the Hölder inequality and by noticing that

$$v_m = (dd^c\|z\|^2)^m = 2m\|z\|^{2m-1} \sigma_m \land d\|z\|,$$

we obtain

$$\int_{B(1)} e^{u+u_1+u_2} dV \leq K \left(\int_0^1 r^{2m-1} \left(\int_{S(r)} \|\tilde{\phi}\|^{2t(dq\triangle - LN)} \|f\|^{2t(dq\triangle - LN)} \sigma_m \right) dr \right)^{1/2} \times \left(\int_0^1 r^{2m-1} \left(\int_{S(r)} \|\tilde{\psi}\|^{2t(dq\triangle - LN)} \|g\|^{2t(dq\triangle - LN)} \sigma_m \right) dr \right)^{1/2}.$$

From Lemma 2.1

$$-\frac{LN}{\Delta} \geq -d(n+1) - \frac{1}{2d}.$$

Therefore, together with assumption (ii) in the Main Theorem, we have

$$dq \triangle - LN - 2 \Delta n(L - 1) = \Delta \left(dq - \frac{LN}{\Delta} - 2n(L - 1) \right) \geq \Delta \left(dq - d(n+1) - \frac{1}{2d} - 2n(L - 1) \right) = d \Delta \left(q - (n+1) - \frac{1}{2d^2} - \frac{2n(L - 1)}{d} \right) > d \Delta \left(\frac{pL(L - 1)}{d} \right) = \Delta \rho L(L - 1),$$

and thus

$$(2t) \cdot L(L - 1)/2 = tL(L - 1) = \frac{L(L - 1) \rho}{dq \triangle - LN - 2 \Delta n(L - 1)} < \frac{1}{\Delta} < 1.$$

Take some p' with $0 < tL(L - 1) < p' < 1$. Then, since $0 < 2t(|a^1| + \cdots + |a^L|) \leq tL(L - 1) < p' < 1$, it follows from Proposition 2.3 that for $r_0 < r < R < 1$,

$$\int_{S(r)} \|\tilde{\phi}\|^{2t(dq\triangle - LN)} \sigma_m = \int_{S(r)} \left| z^{a^1 + \cdots + a^L} W_{a^1 \cdots a^L}(F) \|f\|^{(dq\triangle - LN)} Q^\Delta_1(f) \cdots Q^\Delta_r(f) \right|^{2t} \sigma_m \leq K_3 \left(\frac{1}{R-r} T_F(R, r_0) \right)^{p'} \leq K_3 \left(\frac{d}{R-r} T_F(R, r_0) \right)^{p'}.$$

Using (4.2) and by taking $R = \frac{1+x_r}{2}$, (4.5) becomes

$$\int_{S(r)} \|\tilde{\phi}\|^{2t(dq\triangle - LN)} \sigma_m \leq \frac{K}{(1-r)^{p'}} \left(\log \frac{1}{1-r} \right)^{p'}.$$

Likewise,

$$\int_{S(r)} \|\tilde{\psi}\|^{2t(dq\triangle - LN)} \sigma_m \leq \frac{K}{(1-r)^{p'}} \left(\log \frac{1}{1-r} \right)^{p'}.$$
Therefore, by combining (4.4), (4.6), and (4.7), we have
\[
\int_{B(1)} e^{u+u_1+u_2} dV \leq K \int_0^1 r^{2m-1} \left(\log \frac{1}{1-r} \right)^{p'} dr < \infty,
\]
since \(p' < 1 \). On the other hand, by the result of S.T. Yau (14) and L. Karp (7), we necessarily have
\[
\int_{B(1)} e^{u+u_1+u_2} dV = \infty
\]
because \(u + u_1 + u_2 \) is plurisubharmonic. This is a contradiction. Thus, the Main Theorem is proved. □

References

Department of Mathematics, University of Houston, Houston, Texas 77204
E-mail address: minru@math.uh.edu

Department of Mathematics, University of Houston, Houston, Texas 77204
E-mail address: Suraizou.Sogome@lonestar.edu