A NOTE ON DIMENSION OF TRIANGULATED CATEGORIES

HIROYUKI MINAMOTO

(Communicated by Birge Huisgen-Zimmermann)

Abstract. In this note we study the behavior of the dimension of the perfect derived category Perf(A) of a dg-algebra A over a field k under a base field extension K/k. In particular, we show that the dimension of a perfect derived category is invariant under a separable algebraic extension K/k. As an application we prove the following statement: Let A be a self-injective algebra over a perfect field k. If the dimension of the stable category modA is 0, then A is of finite representation type. This theorem is proved by M. Yoshiwaki in the case when k is an algebraically closed field. Our proof depends on his result.

1. Introduction

In [3] R. Rouquier introduced the dimension of triangulated categories and showed that it gives an upper bound or a lower bound of other dimensions in algebraic geometry or in representation theory (see also [4]). The dimension of triangulated categories is studied by many researchers.

In this note we study the behavior of the dimension of the perfect derived category Perf(A) of a dg-algebra A over a field k under a base field extension K/k. For a field extension K/k, we denote $A \otimes_k K$ by A_K.

Theorem 1.1.

(1) For an algebraic extension K/k, we have

$$ \text{tridim} \text{ Perf}(A) \leq \text{tridim} \text{ Perf}(A_K). $$

(2) If moreover K/k is separable, then equality holds.

As an application we prove the following theorem, which gives evidence that dimension of triangulated categories captures some representation theoretic properties.

The stable category modA plays an important role in the study of a self-injective algebra A (cf. [2][4]). If a self-injective algebra A is of finite representation type, then the dimension of the stable category modA is zero. Then a natural question arises as to whether the converse should also hold.

Theorem 1.2. Let A be a self-injective finite dimensional algebra over a perfect field k. If tridim mod$A = 0$, then A is of finite representation type.

In the case when k is an algebraically closed field, this theorem is proved by M. Yoshiwaki in [5]. Our proof depends on his result.
2. Proof of Theorem 1.1

We recall the definition of the dimension of triangulated categories. Let \mathcal{T} be a triangulated category. For a full subcategory \mathcal{I} of \mathcal{T} we denote by $\langle \mathcal{I} \rangle$ the smallest full subcategory of \mathcal{T} containing \mathcal{I} which is closed under taking shifts, finite direct sums, direct summands and isomorphisms. For full subcategories \mathcal{I} and \mathcal{J} of \mathcal{T} we denote by $\mathcal{I} \ast \mathcal{J}$ the full subcategory of \mathcal{T} consisting of those objects $M \in \mathcal{T}$ such that there exists an exact triangle $I \to M \to J \overset{[1]}{\to}$ with $I \in \mathcal{I}$ and $J \in \mathcal{J}$. Set $\mathcal{I} \circ \mathcal{J} := \langle \mathcal{I} \ast \mathcal{J} \rangle$. For $n \geq 1$ we define inductively

$$\langle \mathcal{I} \rangle_n := \begin{cases} \langle \mathcal{I} \rangle & \text{for } n = 1; \\ \langle \mathcal{I} \rangle \circ \langle \mathcal{I} \rangle_{n-1} & \text{for } n \geq 2. \end{cases}$$

Now we define the dimension of a triangulated category \mathcal{T} to be

$$\text{tridim } \mathcal{T} := \min \{ n \mid \langle E \rangle_{n+1} = \mathcal{T} \text{ for some } E \in \mathcal{T} \}.$$

To prove Theorem 1.1 we prepare some notation. We fix a field k. In the sequel the term dg-A-modules means right dg-A-modules. We denote by $C(A)$ the category of dg-A-modules. There is an adjoint pair

$$- \bigotimes_{k} A_{K} = - \bigotimes_{k} K : C(A) \rightleftarrows C(A_{K}) : \text{Hom}_{A_{K}}(A_{K}, -) =: U_{K/k}.$$

We denote by $\mathcal{D}(A)$ the derived category of dg-A-modules. The functors $- \bigotimes_{k} K$ and $U_{K/k}$ preserve quasi-isomorphisms. Hence we obtain an adjoint pair

$$- \bigotimes_{k} K : \mathcal{D}(A) \rightleftarrows \mathcal{D}(A_{K}) : U_{K/k}.$$

If there seems to be no ambiguity, we denote $U_{K/k}$ by U.

We denote by $\text{Perf}(A)$ the perfect derived category of A. This is the full triangulated subcategory of $\mathcal{D}(A)$ consisting of objects $M \in \mathcal{D}(A)$ obtained from $A \in \mathcal{D}(A)$ by taking shifts, finite direct sums, direct summands, isomorphisms and cones: $\text{Perf}(A) := \bigcup_{n \geq 1} \langle A \rangle_n$. For $M \in \mathcal{D}(A)$ we denote by \mathcal{M} the smallest full subcategory of $\mathcal{D}(A)$ containing M which is closed under taking finite direct sums and direct summands.

Lemma 2.1. If K/k is a finite dimensional extension, then for a dg-A-module M, we have $\text{add } M = \text{add } U(M \otimes_{k} K)$ in $\mathcal{D}(A)$. Therefore we have $\langle M \rangle = \langle U(M \otimes_{k} K) \rangle$. Hence we have $\langle M \rangle_n = \langle U(M \otimes_{k} K) \rangle_n$ for $n \geq 1$.

Proof. The functor U is a forgetful functor. Hence we have a isomorphism $U(M \otimes_{k} K) \cong M^{\oplus \dim_{k} K}$ in $\mathcal{D}(A)$. □

Lemma 2.2. Let K/k be an algebraic extension and E an object of $\mathcal{D}(A)$.

1. If an object \mathcal{G} of $\mathcal{D}(A_{K})$ belongs to $\langle E \otimes_{k} K \rangle_n$, then there exists an intermediate field $k \subset K_0 \subset K$ which is finite dimensional over k such that there exists an object \mathcal{G}' of $\langle E \otimes_{k} K_0 \rangle_n$, such that $\mathcal{G}' \otimes_{K_0} K \cong \mathcal{G}$ in $\mathcal{D}(A_{K})$.

2. Let G be an object of $\mathcal{D}(A)$. If $G \otimes_{k} K$ belongs to $\langle E \otimes_{k} K \rangle_n$, then there exists an intermediate field $k \subset K_0 \subset K$ which is finite dimensional over k such that $G \otimes_{K} K_0$ belongs to $\langle E \otimes_{k} K_0 \rangle_n$.

In the sequel overlined objects and morphisms are those of $\mathcal{D}(A_{K})$, and objects and morphisms with dashes are those of $\mathcal{D}(A_{K_0})$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. (1) First note that for dg-A-modules M, N we have a natural isomorphism of Hom-spaces

$$\text{Hom}_{\mathcal{D}(A_K)}(M \otimes_k K, N \otimes_k K) \cong \text{Hom}_{\mathcal{D}(A)}(M, N) \otimes_k K.$$

It is easy to see that the problem is reduced to the following two cases, (a), (b), by induction.

(a) Let E_1, E_2 be objects of $\mathcal{D}(A)$ such that we have an exact triangle

$$E_1 \otimes_k K \xrightarrow{f} E_2 \otimes_k K \rightarrow G[1]$$

in $\mathcal{D}(A_K)$. By the above remark there are $f_1, \ldots, f_n \in \text{Hom}_{\mathcal{D}(A)}(E_1, E_2)$ and $\alpha_1, \ldots, \alpha_n \in K$ such that we have $f = \sum_{i=1}^n f_i \alpha_i$. Set $K_0 := k(\alpha_1, \ldots, \alpha_n)$ and $f' := \sum_{i=1}^n f_i = \text{Hom}_{\mathcal{D}(A_K)}(E_1 \otimes_k K_0, E_2 \otimes_k K_0)$. Then $f' \otimes_{K_0} K = f$. Therefore we have an isomorphism $G' \otimes_{K_0} K \cong G$ in $\mathcal{D}(A_K)$ where $G' := c(f')$ is the cone of f'.

(b) Let E_1 be an object of $\mathcal{D}(A)$. Assume that G is a direct summand of $E_1 \otimes_k K$. Let τ be an idempotent endomorphism of $E_1 \otimes_k K$ which corresponds to G, i.e., $\tau : E_1 \otimes_k K \rightarrow G \rightarrow E_1 \otimes_k K$, where the left arrow is the canonical projection and the right arrow is the canonical injection. Note that we can obtain the direct summand G from the corresponding idempotent endomorphism τ in the following way: We define a morphism $\overline{X} : (E_1 \otimes_k K)^{\oplus n} \rightarrow (E_1 \otimes_k K)^{\oplus n}$ to be the morphism which is represented by the matrix given by

$$\overline{X} = \begin{pmatrix} 1 - \tau & 0 & 0 & 0 & \cdots \\ \tau & 1 - \tau & 0 & 0 & \cdots \\ 0 & \tau & 1 - \tau & 0 & \cdots \\ 0 & 0 & \tau & 1 - \tau & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} : (E_1 \otimes_k K)^{\oplus n} \rightarrow (E_1 \otimes_k K)^{\oplus n}.$$

Then the cone $c(\overline{X})$ of \overline{X} is isomorphic to G in $\mathcal{D}(A_K)$. By the same method as above, we see that there is an intermediate field $k \subset K_0 \subset K$ which is finite dimensional over k such that there is an idempotent endomorphism e' of $E_1 \otimes_k K_0$ such that we have $e' \otimes_{K_0} K = \tau$. Hence we obtain an endomorphism X' of $(E_1 \otimes_k K_0)^{\oplus n}$ such that $X' \otimes_{K_0} K_0 = \overline{X}$. Then G is isomorphic to $G' \otimes_{K_0} K_0$ in $\mathcal{D}(A_K)$, where $G' := c(X')$ is a cone of X'. We see that G' is a direct summand of $E_1 \otimes_k K_0$ by [1] Proposition 3.2.

(2) By (1) there exists an intermediate field $k \subset K_0 \subset K$ which is finite dimensional over k such that $G' \otimes_{K_0} K \cong G \otimes_k K$ in $\mathcal{D}(A_K)$ for some object G' of $\langle E \otimes_k K_0 \rangle_n$. Let $\overline{f} : G' \otimes_{K_0} K \rightarrow (G \otimes_k K_0) \otimes_{K_0} K$ be an isomorphism in $\mathcal{D}(A_K)$. By the same method as in the proof of (1), we see that there exists an intermediate field $K_0 \subset K_1 \subset K$ which is finite dimensional over k such that there exists an isomorphism $f' : G' \otimes_{K_0} K_1 \cong (G \otimes_k K_0) \otimes_{K_0} K_1 \cong G \otimes_k K_1$. Hence $G \otimes_k K_1$ belongs to $\langle E \otimes_k K_1 \rangle_n$. \hfill \square

Proof of Theorem 1.1. (1) First we prove the case when K/k is a finite dimensional extension. Assume that there exists an object \overline{E} of $\text{Perf}(A_K)$ such that $\langle \overline{E} \rangle_n = \text{Perf}(A_K)$. Since K/k is a finite k dimensional extension, $U(\overline{E})$ belongs to $\text{Perf}(A)$. It is enough to prove that $\langle U(\overline{E}) \rangle_n = \text{Perf}(A)$. Let G be an object of $\text{Perf}(A)$. Then $G \otimes_k K$ belongs to $\text{Perf}(A_K)$. Therefore $G \otimes_k K$ belongs to $\langle \overline{E} \rangle_n$. Since U is exact, $U(G \otimes_k K)$ belongs to $\langle U(\overline{E}) \rangle_n$. By Lemma 2.1 G belongs to $\langle U(\overline{E}) \rangle_n$.
Next we prove the general case. Assume that there exists an object E of Perf(A_K) such that $(E)_n = Perf(A_K)$. By Lemma 2.2, there exists an intermediate field $k \subseteq K_0 \subseteq K$ which is finite dimensional over k such that there exists an object E' of Perf(A_{K_0}) such that $E' \otimes_{K_0} K \cong E$. By the first step, it is enough to prove that $(E')_n = Perf(A_{K_0})$. Let G' be an object of Perf(A_{K_0}). Since $G' \otimes_{K_0} K$ belongs to Perf(A_K), by Lemma 2.2 there exists an intermediate field $K_0 \subseteq K_1 \subseteq K$ which is finite dimensional over k such that $G' \otimes_{K_0} K_1$ belongs to $(E' \otimes_{K_0} K_1)_n$. Therefore $U_{K_1/K_0}(G' \otimes_{K_0} K_1)$ belongs to $(U_{K_1/K_0}(E' \otimes_{K_0} K_1))_n$. Hence by Lemma 2.1 G' belongs to $(E')_n$.

(2) We assume that K/k is a separable algebraic extension. We prove that for a perfect dg-A-module $E \in Perf(A)$ such that $(E)_n = Perf(A)$ for some $n \in \mathbb{N}$ we have $(E \otimes_k K')_n = Perf(A_K)$.

First we assume that the separable extension K/k is finite dimensional. Let G be a perfect dg-A_{K}-module. Since the extension K/k is finite dimensional, $U(G) \subseteq Perf(A)$. Hence $U(G) \otimes_k K \subseteq Perf(A)$, and $U(G) \otimes_k K \subseteq Perf(A)$.

Theorem 2.3. (1) If an algebraic extension K/k is not separable, then the dimension tridim Perf(A_K) is possibly larger than the dimension tridim Perf(A).

Here is an example. Let F be a field of characteristic $p > 0$. Let $K := F(t)$ be a rational function field in one variable and define $k := F(t^p) \subseteq K = F(t)$. Set $A := K$. Then it is easy to see that $A_K \cong K[x]/(x^p)$. Since $	ext{gldim} A_K = \infty$, we see that tridim Perf$(A_K) = \infty$ by [3] Proposition 7.26]. However since $A = K$ is a field, we have tridim Perf$(A) = 0$.

(2) When the extension K/k is not algebraic, the dimension tridim Perf(A_K) is possibly larger than tridim Perf(A) even if an extension K/k is separable.

Here is an example. Assume that for simplicity k is algebraically closed. Let $K = k(y)$ and $A = k(x)$ be rational function fields in one variable over k. We claim that tridim Perf$(A_K) = 1$. First note that A_K is the localization $S^{-1}k[x,y]$ of the polynomial algebra $k[x,y]$ in two variables by the multiplicative set $S = \{f(x)g(y) \mid f(x) \in k[x] \setminus 0, g(y) \in k[y] \setminus 0\}$. Hence it is easy to see that A_K is a regular algebra essentially of finite type over k of dimension 1. Therefore we see that Perf$(A_K) \cong D^b(\text{mod} A_K)$ and tridim Perf$(A_K) \leq 1$ by [3] Proposition 7.4]. We denote by W the image of the canonical embedding $i : \text{Spec} A_K \hookrightarrow \text{Spec} k[x,y]$. It is easy to see that for every maximal ideal m of $k[x,y]$ there exists a prime ideal p of height 1 contained in m which belongs to W (for a maximal ideal $m = (x - a, y - b)$ where $a, b \in k$, it is enough to set $p := (x + y - a - b)$). Therefore we see that for
every nonempty open set U of $\text{Spec} \ k[x, y]$, there exists a prime ideal p of height 1 which belongs to $U \cap W$. Since the derived pullback functor $\mathbb{R}i^* : D^b(\text{mod} \ k[x, y]) \to D^b(\text{mod} \ A_K)$ is essentially surjective, by the method of proof of [3, Theorem 7.17] we conclude that $\text{tridim} \ \text{Perf}(A_K) = 1$. However, since $A = k(x)$ is a field, we see that $\text{tridim} \ \text{Perf}(A) = 0$.

3. Proof of Theorem 1.2

Proof of Theorem 1.2 We denote the algebraic closure of k by \overline{k}. By Lemma 3.1 below it is enough to show that $A_{\overline{k}} := A \otimes_k \overline{k}$ has finite representation type. By [5] it is enough to show that $\text{tridim} \ \text{mod} A_{\overline{k}} = 0$. Since we assume that $\text{tridim} \ \text{mod} A = 0,$ there exists a finite A-module E such that $\langle E \rangle_1 = \text{mod} A$. By the same method of the proof of Theorem 1.1 (2), we see that $\langle E \otimes \overline{k} \rangle_1 = \text{mod} A_{\overline{k}}$. This completes the proof of Theorem 1.2.

Lemma 3.1. Let A be a finite dimensional k-algebra. If $A_{\overline{k}}$ is of finite representation type, then A is of finite representation type.

For a finitely generated A-module M, we denote by $\text{add}(M)$ the smallest full subcategory of $\text{mod} A$ which is closed under taking finite direct sums, direct summands and isomorphisms.

Proof. Assume that $A_{\overline{k}}$ is of finite representation type. There exists a finitely generated $A_{\overline{k}}$-module \mathcal{N} such that $\text{add} \mathcal{N} = \text{mod} A_{\overline{k}}$. Since \mathcal{N} has a finite presentation $A_{\overline{k}}^{\oplus n} \to A_{\overline{k}}^{\oplus m} \to \mathcal{N} \to 0$, by the same method as in the proof of Lemma 2.2 we see that there exists an intermediate field $k \subset K_0 \subset k$ which is finite dimensional over k such that there exists a finitely generated A_{K_0}-module N' such that $N' \otimes_{K_0} k \cong \mathcal{N}$ as $A_{\overline{k}}$-modules. We prove that $\text{add}(U(N')) = \text{mod} A$ where $U = U_{K_0/k} : \text{mod} A_{K_0} \to \text{mod} A$ is the forgetful functor. Let M be a finitely generated A-module. Since $M \otimes_k k$ belongs to $\text{add}(N' \otimes_{K_0} k)$, by the same method as in the proof of Lemma 2.2 we see that there exists an intermediate field $K_0 \subset K_1 \subset k$ which is finite dimensional over k such that $M \otimes_k K_1$ belongs to $\text{add}(N' \otimes_{K_0} K_1)$. Therefore we have $\text{add}(M) \subset \text{add}(N' \otimes_{K_0} K_1)$. Let $U' := U_{K_1/k} : \text{mod} A_{K_1} \to \text{mod} A$ be the forgetful functor. By the same method as in the proof of Lemma 2.2 we see that $\text{add}(M) = \text{add}(U'(M \otimes_k K_1))$ and that $\text{add}(U(N')) = \text{add}(U'(N' \otimes_{K_0} K_1))$. Hence M belongs to $\text{add}(U(N'))$.

Acknowledgements

The author thanks O. Iyama for suggesting the example in Remark 2.3(1). He also thanks H. Ikoma, S. Takagi and M. Yoshiwaki for valuable discussions. The author was supported by Grant-in-Aid for Young Scientists (B)21740017.

References

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail address: minamoto@kurims.kyoto-u.ac.jp