Results on Witt kernels of quadratic forms for multi-quadratic extensions
HTML articles powered by AMS MathViewer
- by Roberto Aravire and Ahmed Laghribi
- Proc. Amer. Math. Soc. 141 (2013), 4191-4197
- DOI: https://doi.org/10.1090/S0002-9939-2013-11730-2
- Published electronically: August 22, 2013
- PDF | Request permission
Abstract:
In this paper we compute the Witt kernel of quadratic forms for the composition of a purely inseparable multi-quadratic extension with a separable quadratic extension. We also include the case of a multi-quadratic purely inseparable extension by completing the proof given before by the second author for such an extension.References
- Hamza Ahmad, Witt kernels of bi-quadratic extensions in characteristic 2, Bull. Austral. Math. Soc. 69 (2004), no. 3, 433–440. MR 2066661, DOI 10.1017/S0004972700036212
- R. Aravire and R. Baeza, The behavior of quadratic and differential forms under function field extensions in characteristic two, J. Algebra 259 (2003), no. 2, 361–414. MR 1955526, DOI 10.1016/S0021-8693(02)00568-9
- Ricardo Baeza, Quadratic forms over semilocal rings, Lecture Notes in Mathematics, Vol. 655, Springer-Verlag, Berlin-New York, 1978. MR 0491773, DOI 10.1007/BFb0070341
- Detlev W. Hoffmann, Witt kernels of bilinear forms for algebraic extensions in characteristic 2, Proc. Amer. Math. Soc. 134 (2006), no. 3, 645–652. MR 2180880, DOI 10.1090/S0002-9939-05-08175-X
- A. Dolphin and D. W. Hoffmann, Differential forms and bilinear forms under field extensions, preprint, 2011.
- Kazuya Kato, Symmetric bilinear forms, quadratic forms and Milnor $K$-theory in characteristic two, Invent. Math. 66 (1982), no. 3, 493–510. MR 662605, DOI 10.1007/BF01389226
- Ahmed Laghribi, Witt kernels of function field extensions in characteristic 2, J. Pure Appl. Algebra 199 (2005), no. 1-3, 167–182. MR 2134299, DOI 10.1016/j.jpaa.2004.12.005
- Ahmed Laghribi, Witt kernels of quadratic forms for purely inseparable multiquadratic extensions in characteristic 2, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2481–2486. MR 2213724, DOI 10.1090/S0002-9939-06-08649-7
- Pasquale Mammone and Remo Moresi, Formes quadratiques, algèbres à division et extensions multiquadratiques inséparables, Bull. Belg. Math. Soc. Simon Stevin 2 (1995), no. 3, 311–319 (French, with French summary). MR 1338463
Bibliographic Information
- Roberto Aravire
- Affiliation: Universidad Arturo Prat, Casilla 121, Iquique, Chile
- Email: raravire@unap.cl
- Ahmed Laghribi
- Affiliation: Université d’Artois, Faculté des Sciences Jean Perrin, Laboratoire de mathématiques de Lens - EA2462, rue Jean Souvraz - SP18, F-62307 Lens, France
- Email: laghribi@euler.univ-artois.fr
- Received by editor(s): April 2, 2011
- Received by editor(s) in revised form: February 13, 2012
- Published electronically: August 22, 2013
- Additional Notes: The first author was supported by Fondecyt $\#$1090006 and Proyecto Anillos PBCT ACT056
- Communicated by: Matthew A. Papanikolas
- © Copyright 2013 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 4191-4197
- MSC (2010): Primary 11E04, 11E81
- DOI: https://doi.org/10.1090/S0002-9939-2013-11730-2
- MathSciNet review: 3105862