An asymptotic formula for representations of integers by indefinite hermitian forms
HTML articles powered by AMS MathViewer
- by Emilio A. Lauret
- Proc. Amer. Math. Soc. 142 (2014), 1-14
- DOI: https://doi.org/10.1090/S0002-9939-2013-11726-0
- Published electronically: September 4, 2013
- PDF | Request permission
Abstract:
We fix a maximal order $\mathcal O$ in $\mathbb {F}=\mathbb {R},\mathbb {C}$ or $\mathbb {H}$, and an $\mathbb {F}$-hermitian form $Q$ of signature $(n,1)$ with coefficients in $\mathcal O$. Let $k\in \mathbb {N}$. By applying a lattice point theorem on an $n$-dimensional $\mathbb {F}$-hyperbolic space, we give an asymptotic formula with an error term, as $t\to +\infty$, for the number $N_t(Q,-k)$ of integral solutions $x\in \mathcal O^{n+1}$ of the equation $Q[x]=-k$ satisfying $|x_{n+1}|\leq t$.References
- Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566, DOI 10.2307/1970210
- Mikhail Borovoi and Zeév Rudnick, Hardy-Littlewood varieties and semisimple groups, Invent. Math. 119 (1995), no. 1, 37–66. MR 1309971, DOI 10.1007/BF01245174
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- R. W. Bruggeman, R. J. Miatello, and N. R. Wallach, Resolvent and lattice points on symmetric spaces of strictly negative curvature, Math. Ann. 315 (1999), no. 4, 617–639. MR 1731464, DOI 10.1007/s002080050331
- J. Cogdell, J.-S. Li, I. Piatetski-Shapiro, and P. Sarnak, Poincaré series for $\textrm {SO}(n,1)$, Acta Math. 167 (1991), no. 3-4, 229–285. MR 1120604, DOI 10.1007/BF02392451
- W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J. 71 (1993), no. 1, 143–179. MR 1230289, DOI 10.1215/S0012-7094-93-07107-4
- J. Elstrodt, F. Grunewald, and J. Mennicke, Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces, Invent. Math. 101 (1990), no. 3, 641–685. MR 1062799, DOI 10.1007/BF01231519
- Yumiko Hironaka, Spherical functions and local densities on Hermitian forms, J. Math. Soc. Japan 51 (1999), no. 3, 553–581. MR 1691493, DOI 10.2969/jmsj/05130553
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875, DOI 10.1016/0022-1236(82)90050-7
- B. M. Levitan, Asymptotic formulas for the number of lattice points in Euclidean and Lobachevskiĭ spaces, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 13–38, 255 (Russian). MR 896876
- Jian-Shu Li, Kloosterman-Selberg zeta functions on complex hyperbolic spaces, Amer. J. Math. 113 (1991), no. 4, 653–731. MR 1118457, DOI 10.2307/2374843
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- S. Raghavan, On representation by hermitian forms, Acta Arith. 8 (1962/63), 33–96. MR 143734, DOI 10.4064/aa-8-1-33-96
- K. G. Ramanathan, Zeta functions of quadratic forms, Acta Arith. 7 (1961/62), 39–69. MR 130863, DOI 10.4064/aa-7-1-38-69
- John G. Ratcliffe and Steven T. Tschantz, On the representation of integers by the Lorentzian quadratic form, J. Funct. Anal. 150 (1997), no. 2, 498–525. MR 1479550, DOI 10.1006/jfan.1997.3129
- Carl Ludwig Siegel, On the theory of indefinite quadratic forms, Ann. of Math. (2) 45 (1944), 577–622. MR 10574, DOI 10.2307/1969191
- C. L. Siegel, Lectures on quadratic forms, Tata Institute of Fundamental Research Lectures on Mathematics, No. 7, Tata Institute of Fundamental Research, Bombay, 1967. Notes by K. G. Ramanathan. MR 0271028
- Tonghai Yang, An explicit formula for local densities of quadratic forms, J. Number Theory 72 (1998), no. 2, 309–356. MR 1651696, DOI 10.1006/jnth.1998.2258
Bibliographic Information
- Emilio A. Lauret
- Affiliation: FaMAF–CIEM, Universidad Nacional de Córdoba, X5000HUA–Córdoba, Argentina
- MR Author ID: 1016885
- ORCID: 0000-0003-3729-5300
- Email: elauret@famaf.unc.edu.ar
- Received by editor(s): September 29, 2011
- Received by editor(s) in revised form: February 22, 2012
- Published electronically: September 4, 2013
- Additional Notes: This work was supported by CONICET and Secyt-UNC
- Communicated by: Kathrin Bringmann
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1-14
- MSC (2010): Primary 11D45, 11E39; Secondary 58C40
- DOI: https://doi.org/10.1090/S0002-9939-2013-11726-0
- MathSciNet review: 3119175