ON A POLYNOMIAL SEQUENCE
ASSOCIATED WITH THE BESSEL OPERATOR

ANA F. LOUREIRO, P. MARONI, AND S. YAKUBOVICH

(Communicated by Walter Van Assche)

Abstract. By means of the Bessel operator a polynomial sequence is constructed to which several properties are given. Among them are its explicit expression, the connection with the Euler numbers, and its integral representation via the Kontorovich-Lebedev transform. Despite its non-orthogonality (with respect to an L_2-inner product), it is possible to associate to the canonical element of its dual sequence a positive-definite measure as long as certain stronger constraints are imposed.

1. INTRODUCTION AND PRELIMINARIES

The modified Bessel function of the third kind (also known as the Macdonald function, especially in Russian literature), $K_{i\tau}(x)$ of the argument $x > 0$ and the pure imaginary subscript $i\tau$, is an eigenfunction of the (Bessel) operator

$$A = x^2 - x \frac{d}{dx} x \frac{d}{dx} = -x^2 \frac{d^2}{dx^2} - x \frac{d}{dx} + x^2$$

for the associated eigenvalues τ^2, i.e.,

$$AK_{i\tau}(x) = \tau^2 K_{i\tau}(x),$$

and naturally provides the identity on the integral powers of the Bessel operator A,

$$A^nK_{i\tau}(x) = \tau^{2n}K_{i\tau}(x), \quad n \in \mathbb{N},$$

inductively defined. Throughout this paper, \mathbb{N} will denote the set of all positive integers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, whereas \mathbb{R} and \mathbb{C} will denote, respectively, the fields of the real and complex numbers. By \mathbb{R}^+ and \mathbb{R}_0^+ we respectively mean the set of all positive and nonnegative real numbers. Further notation is introduced as needed throughout the text.

Defined also by the cosine Fourier transform,

$$K_{i\tau}(x) = \int_0^\infty e^{-x \cosh(u)} \cos(\tau u)du, \quad x \in \mathbb{R}^+, \tau \in \mathbb{R},$$

Received by the editors April 20, 2011 and, in revised form, December 20, 2011.
2010 Mathematics Subject Classification. Primary 33C45, 42C05, 44A15, 44A20.
The work of the first author was supported by Fundação para a Ciência e Tecnologia via the grant SFRH/BPD/63114/2009.
The research of the first and third authors was partially funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese government through the FCT (Fundação para a Ciência e a Tecnologia) under the project PEst-C/MAT/UI0144/2011.

©2013 American Mathematical Society
Reverts to public domain 28 years from publication

467
the function $K_{i\tau}$ is real valued and represents a kernel of the following operator of the Kontorovich-Lebedev transformation \cite{19}, given by the formula

\begin{equation}
K_{i\tau}[f] = \int_{0}^{\infty} K_{i\tau}(x)f(x)dx,
\end{equation}

which is an isometric isomorphism (see \cite{17}) between the two Hilbert spaces $L_2(\mathbb{R}^+;x\,dx)$ and $L_2(\mathbb{R}^+;\tau\sinh \pi \tau d\tau)$. Moreover, the following inverse formula holds:

\begin{equation}
f(x) = \frac{2}{\pi^2x} \int_{0}^{\infty} \tau \sinh \pi \tau \ K_{i\tau}(x)K_{i\tau}[f] \, d\tau,
\end{equation}

where the convergence of the latter integral is understood with respect to the norm in $L_2(\mathbb{R}^+;x\,dx)$.

The Kontorovich-Lebedev transform has been used in many applications, including, for instance, fluid mechanics, quantum and nano-optics and plasmonics. This transform, where integration occurs over the index of the function rather than over the argument, proves to be useful in solving the resulting differential equations when modeling optical or electronic responses of such problems.

Recently in \cite{16}, the action of any power of the operator A over e^{-x} was investigated. Precisely, the sequence $\{e^{-x}A^ne^{x}\}_{n\geq0}$ was shown to be a polynomial sequence (PS), spanning the vector space \mathcal{P} – the set of all polynomials with coefficients in \mathbb{C} – since each of its elements has exactly degree n. However, this sequence is orthogonal with respect to the singular measure δ (the Dirac measure). In the present work, we propose instead to investigate the functions

$$e^{-x}x^{-\alpha}A^nx^{\alpha}, \quad n \in \mathbb{N}_0,$$

which end up being polynomials of exactly degree n as long as $\Re(\alpha) > -1/2$, as will be revealed in Section \ref{section2}. In this case the sequence $\{p_n(\cdot;\alpha)\}_{n\geq0}$ defined by

\begin{equation}
p_n(x;\alpha) = (-1)^n e^{x} x^{-\alpha} A^n e^{-x} x^{\alpha}, \quad n \in \mathbb{N}_0,
\end{equation}

is indeed a PS. The properties of $\{p_n(\cdot;\alpha)\}_{n\geq0}$ will be thoroughly revealed in Section \ref{section2} where a generating function, the connection with the generalized Euler polynomials or the Bernoulli polynomials (when the parameter α ranges in \mathbb{N}) will be expounded. On the grounds of these developments lies the Kontorovich-Lebedev transform. The differential-difference equations over the polynomials $p_n(x;\alpha)$ are crucial for the subsequent developments related to the corresponding dual sequence of monic polynomial sequence (MPS) $\{P_n(x;\alpha) := a_n^{-1}p_n(x;\alpha)\}_{n\geq0}$, where $a_n \neq 0$ are the leading coefficients of the polynomials $p_n(x;\alpha)$, $n \in \mathbb{N}_0$.

The research on the MPS $\{P_n(x;\alpha)\}_{n\geq0}$ will then proceed toward the analysis of the corresponding dual sequence, $\{u_n(\alpha)\}_{n\geq0}$, whose elements, called forms (or linear functionals), belong to the dual space \mathcal{P}' of \mathcal{P} and are defined according to

$$\langle u_n(\alpha), P_k(\cdot;\alpha) \rangle := \delta_{n,k}, \quad n, k \geq 0,$$

where $\delta_{n,k}$ represents the Kronecker delta function. Here, by $\langle u, f \rangle$ we mean the action of $u \in \mathcal{P}'$ over $f \in \mathcal{P}$, but a special notation is given to the action over the elements of the canonical sequence $\{x^n\}_{n\geq0}$ – the moments of $u \in \mathcal{P}'$: $\langle u, x^n \rangle, n \geq 0$. Any element u of \mathcal{P}' can be written in a series of any dual sequence $\{v_n\}_{n\geq0}$ of an MPS $\{B_n\}_{n\geq0}$ \cite{9}:

\begin{equation}
u_n := \sum_{n\geq0} \langle u, B_n \rangle \ v_n.
\end{equation}
To infer differential equations for the elements of the dual sequence it is important to recall that a linear operator \(T : \mathcal{P} \rightarrow \mathcal{P} \) has a transpose \('T : \mathcal{P}' \rightarrow \mathcal{P}' \) defined by
\[
\langle 'T(u), f \rangle = \langle u, T(f) \rangle, \quad u \in \mathcal{P}', \quad f \in \mathcal{P}.
\]
For example, for any form \(u \) and any polynomial \(g \), let \(Du = u' \) and \(gu \) be the forms defined as usual by \(\langle u', f \rangle := -\langle u, f' \rangle \), \(\langle gu, f \rangle := \langle u, gf \rangle \), where \(D \) is the differential operator \([9]\). Thus, \(D \) on forms is minus the transpose of the differential operator \(D \) on polynomials.

In Section 3 we will come to the conclusion that it is possible to associate to \(u_0(\alpha) \) a positive-definite measure as long as \(\Re(\alpha) > 0 \). This implies the regularity of any form proportional to \(u_0(\alpha) \), a concept that is described in detail in Section 3. Concomitantly, the existence of a unique MPS regularly orthogonal (hereafter MOPS) with respect to \(u_0(\alpha) \) is ensured. That is, there exists a unique \(\{Q_n(x; \alpha)\}_{n \geq 0} \) such that \(\langle u_0(\alpha), Q_n(x; \alpha)Q_m(x; \alpha) \rangle = k_n(\alpha)\delta_{n,m} \) with \(k_n \neq 0 \) for any \(n, m \in \mathbb{N}_0 \).

2. Algebraic and Differential Properties

The functions defined by \((1.6)\) are actually polynomials of exactly degree \(n \), as previously claimed and proved below, and therefore \(\{p_n(x; \alpha)\}_{n \geq 0} \) forms a PS. Once this is guaranteed we will proceed to obtain an explicit expression for these polynomials \(p_n(x; \alpha) \) in subsection 2.1, an integral representation for such polynomials by means of the Kontorovich-Lebedev transform in subsection 2.2 and, finally, by inverting this integral transform, to derive a relation between the generalized Euler polynomials and \(p_n(x; \alpha) \) in subsection 2.3.

Lemma 2.1. For any complex number \(\alpha \) such that \(\Re(\alpha) > -1/2 \), the functions \(p_n(x; \alpha) \) defined in \((1.6)\) are actually polynomials of exact degree \(n \) fulfilling:
\[
p_{n+1}(x; \alpha) = x^2p''_n(x; \alpha) - x(2x - 1 - 2\alpha)p'_n(x; \alpha) - (2\alpha + 1)x - \alpha^2)p_n(x; \alpha), \quad n \in \mathbb{N}_0,
\]
and also
\[
(2\alpha + 1) x p_n(x; \alpha + 1) = -p_{n+1}(x; \alpha) + \alpha^2 p_n(x; \alpha), \quad n \in \mathbb{N}_0.
\]
Moreover, \(p_n(0; \alpha) = \alpha^{2n} \) and \(p_n(x; \alpha) = (-2)^n(\alpha + 1/2)n!x^n + a_{n-1}(x) \) with deg \(a_{n-1} \leq n - 1 \) for any \(n \in \mathbb{N}_0 \) (under the convention \(a_{-1}(x) = 0 \)) and \((y)_n \) representing the Pochhammer symbol: \((y)_n = \prod_{\tau=0}^{n-1}(y + \tau) \) for \(n \in \mathbb{N} \) and \((y)_0 = 1 \).

Proof. According to definition \((1.6)\), we may write
\[
p_{n+k}(x; \alpha) = (-1)^k e^x x^{-\alpha} A^k \left(e^{-x} x^\alpha \right) \left(e^x x^{-\alpha} A^n e^{-x} x^\alpha \right), \quad n, k \in \mathbb{N},
\]
provided
\[
p_{n+k}(x; \alpha) = (-1)^k e^x x^{-\alpha} A^k \left(e^{-x} x^\alpha p_n(x; \alpha) \right), \quad n, k \in \mathbb{N}.
\]
On behalf of the property
\[
e^x x^{-\alpha} A(e^{-x} x^\alpha f(x)) = -e^x \frac{d^2}{dx^2} f(x) + x(2x - 1 - 2\alpha) \frac{d}{dx} f(x) + (2\alpha + 1)x - \alpha^2 f(x)
\]
which holds for any analytic function \(f \), the particular choice of \(k = 1 \) in \((2.3)\) furnishes \((2.1)\), whereas the choice of \(n = 1 \) with \(k \) varying within \(\mathbb{N} \) leads to the equality \((2.2)\).
Insofar as computing (1.6) for \(n = 0 \) and \(n = 1 \), we respectively extract that
\[p_0(x; \alpha) = 1 \quad \text{and} \quad p_1(x; \alpha) = -(2\alpha + 1)x + \alpha^2. \]
Then on the basis of (2.1), by finite induction we derive that \(p_n(x; \alpha) \) is a polynomial that has exactly degree \(n \) as long as \(\Re(\alpha) > -1/2 \).

Finally, the particular choice of \(x = 0 \) in (2.2) provides
\[p_{n+1}(0; \alpha) = \alpha^{2n+2}p_0(0; \alpha), \quad \text{while from (2.1)} \]
we deduce that the leading coefficient \(c_{n,n}(\alpha) \) of \(p_n(x; \alpha) \) satisfies
\[c_{n+1,n+1}(\alpha) = -(2n + 2\alpha + 1)c_{n,n}(\alpha) \quad \text{for any} \quad n \in \mathbb{N}, \quad \text{whence the result}. \]

Directly from (2.3), we obtain
\[
A^k\left(e^{-x}x^\alpha p_n(x; \alpha)\right) = A^n\left(e^{-x}x^\alpha p_k(x; \alpha)\right), \quad n, k \in \mathbb{N}.
\]

From the insertion of (2.2) into (2.1) we derive
\[(2\alpha+1)p_n(x; \alpha+1) = -x^2p_n''(x; \alpha) + (2x - 2\alpha)p_n'(x; \alpha) + (1 + 2\alpha)p_n(x; \alpha), \quad n \geq 0. \]

The polynomial sequence treated in [16] corresponds to the special case
\{\(p_n(x; 0) \}_{n \geq 0} \}. The introduction of this slight modification on the sequence
\{\(p_n(x; \alpha) \}_{n \geq 0} \} — more precisely, the inclusion of \(x^{-\alpha} \) on the left- and of \(x^\alpha \) on the right-hand side — has the merit and pertinency of guaranteeing that we will be able to deal with regular forms as long as \(\Re(\alpha) > 0 \), as will be analyzed on Section 3. Notwithstanding this advantage, the analysis of \{\(p_n(x; \alpha) \}_{n \geq 0} \} becomes significantly harder to deal with.

Before proceeding further, we list a few elements of \{\(p_n(x; \alpha) \}_{n \geq 0} \}:
\[
\begin{align*}
p_1(x; \alpha) &= x(-2\alpha - 1) + \alpha^2 \\
p_2(x; \alpha) &= x^2(4\alpha(\alpha + 2) + 3) + x(-2\alpha(2\alpha + 3) + 2) - 1 + \alpha^4 \\
p_3(x; \alpha) &= -x^3(2\alpha + 1)(2\alpha + 3)(2\alpha + 5) + x^2(2\alpha + 1)(2\alpha + 3)(3\alpha + 6) + x(2\alpha + 1)(\alpha^2 + \alpha + 1)(3(\alpha + 1) + 1) + \alpha^6.
\end{align*}
\]

The polynomials \(p_n(x; \alpha) \) in the variable \(x \) are also polynomials in the variable \(\alpha \), but of degree \(2n \) for each \(n \in \mathbb{N} \). This can be deduced from (2.2).

2.1. **Connection coefficients with the canonical sequence.** On the grounds of (2.1), by performing straightforward computations we deduce that the coefficients \(c_{n,\nu}(\alpha) \) defined through
\[
p_n(x; \alpha) = \sum_{\nu=0}^{n} c_{n,\nu}(\alpha)x^\nu
\]
fulfill the recurrence relation
\[(2\alpha+1)c_{n+1,\nu+1}(\alpha) = (\nu + \alpha)^2c_{n,\nu}(\alpha) - (2\nu + 2\alpha + 1)c_{n,\nu-1}(\alpha), \quad 0 \leq \nu \leq n, \quad n \geq 0, \]
under the convention of \(c_{n,-1}(\alpha) = c_{n,n+1}(\alpha) = 0 \), while (2.2) yields
\[(2\alpha + 1)c_{n,\nu-1}(\alpha + 1) = -c_{n+1,\nu}(\alpha) + \alpha^2c_{n,\nu}(\alpha), \quad 1 \leq \nu \leq n + 1, \quad n \geq 0. \]

Lemma 2.2. The sequence \(p_n(x; \alpha) \) is given by
\[
p_n(x; \alpha) = \sum_{\nu=0}^{n} \left\{ \frac{2^{\nu+1}(\alpha + 1/2)_\nu}{\nu!} \sum_{\mu=0}^{\nu} \binom{\nu}{\mu} \frac{(-1)^\mu \Gamma(2\alpha + \mu)}{\Gamma(2\alpha + \mu + \nu + 1)} (\alpha + \mu)^{2n+1} \right\} x^\nu, \quad n \geq 0.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Let us set $c_{n,\nu}(\alpha) = (-2)^\nu(\alpha + 1/2)^\nu \tilde{c}_{n,\nu}(\alpha)$ in order to deduce an explicit expression for $\tilde{c}_{n,\nu}(\alpha)$. The “triangular” relation (2.6) ensures another “triangular” relation for the new set of coefficients $\{\tilde{c}_{n,\nu}(\alpha)\}_{0\leq \nu \leq n}$:

$$
\begin{align*}
\begin{cases}
\tilde{c}_{n+1,\nu}(\alpha) = \tilde{c}_{n,\nu-1}(\alpha) + (\nu + \alpha)^2 \tilde{c}_{n,\nu}(\alpha), & 0 \leq \nu \leq n, \ n \geq 0, \\
\tilde{c}_{n,0}(\alpha) = \alpha^{2n}, & \tilde{c}_{n,\nu}(\alpha) = 0, \ \nu \geq n + 1, \ n \geq 0.
\end{cases}
\end{align*}
$$

(2.9)

The particular choice of $n = 0, 1$ or 2 in (2.9) furnishes the identities

$$
\begin{align*}
\tilde{c}_{1,0}(\alpha) &= \alpha^2, & \tilde{c}_{1,1}(\alpha) &= 1, & \tilde{c}_{2,0}(\alpha) &= \alpha^4, & \tilde{c}_{2,1}(\alpha) &= 1 + 2\alpha(\alpha + 1), & \tilde{c}_{2,2}(\alpha) &= 1,
\end{align*}
$$

which show the validity of the identity

$$
\tilde{c}_{n,\nu}(\alpha) = \frac{2}{\nu!} \sum_{\mu=0}^{\nu} \binom{\nu}{\mu} \frac{(-1)^{\mu+\nu} \Gamma(2\alpha + \mu)}{\Gamma(2\alpha + \mu + \nu + 1)} (\alpha + \mu)^{2n+1}, \ 0 \leq \nu \leq n,
$$

(2.10)

for at least $n = 0, 1$ and 2. By finite induction, we will show that (2.10) actually holds for any $n \in \mathbb{N}$. Indeed, according to (2.9), it follows that

$$
\begin{align*}
\tilde{c}_{n+1,\nu}(\alpha) &= \frac{2}{(\nu - 1)!} \sum_{\mu=0}^{\nu-1} \binom{\nu - 1}{\mu} \frac{(-1)^{\mu+\nu-1} \Gamma(2\alpha + \mu)}{\Gamma(2\alpha + \mu + \nu)} (\alpha + \mu)^{2n+1} \\
&\quad + \frac{2(\nu + \alpha)^2}{\nu!} \sum_{\mu=0}^{\nu} \binom{\nu}{\mu} \frac{(-1)^{\mu+\nu} \Gamma(2\alpha + \mu)}{\Gamma(2\alpha + \mu + \nu + 1)} (\alpha + \mu)^{2n+1} \\
&= \frac{2}{\nu!} \sum_{\mu=0}^{\nu} \binom{\nu}{\mu} \frac{(-1)^{\mu+\nu} \Gamma(2\alpha + \mu)}{\Gamma(2\alpha + \mu + \nu + 1)} (\alpha + \mu)^{2n+1} \\
&\quad \times \left(- (\nu - \mu)(\nu + \mu + 2\alpha) + (\nu + \alpha)^2 \right) \\
&= \frac{2}{\nu!} \sum_{\mu=0}^{\nu} \binom{\nu}{\mu} \frac{(-1)^{\mu+\nu} \Gamma(2\alpha + \mu)}{\Gamma(2\alpha + \mu + \nu + 1)} (\alpha + \mu)^{2n+3},
\end{align*}
$$

which corresponds to (2.10) when n is replaced by $n + 1$. \hfill \square

The particular choice of $\alpha = 0$ gives a simpler expression for $p_n(x; 0)$ than the one obtained in [10]. Moreover, in this case, the coefficients $\tilde{c}_{n,\nu}(0)$ coincide with the 0-modified Stirling numbers of the second kind, a particular case of the A-modified Stirling numbers of the second kind treated in [7]. They correspond to the Jacobi-Stirling numbers expounded in [4] and were explored from a purely combinatorial point of view in [5]. Indeed, the set of numbers $\{\tilde{c}_{n,\nu}(\alpha)\}$ bears some resemblance to the Jacobi-Stirling numbers, triggering the problem of giving them some combinatorial significance. To avoid dispersion, we defer this study for a future work.

2.2. Generating function. From this point forward we consider $\Re(\alpha) > 0$. Using relation (2.16.6.4) of [13] and the reciprocal formula (1.5) we obtain the representation

$$
e^{-x} x^\alpha = \frac{2^{1-\alpha}}{\pi^{3/2} \Gamma(\alpha + 1/2)} \int_0^\infty \tau \sinh(\pi \tau) \Gamma(\alpha + i\tau) \Gamma(\alpha - i\tau) K_{i\tau}(x) d\tau.
$$

(2.11)
The absolute and uniform convergence of
\begin{equation}
\int_0^\infty \frac{\partial^m K_{\tau}(x)}{\partial x^m} \tau^{2n+1} \sinh(\pi \tau) \Gamma(\alpha + i \tau) \Gamma(\alpha - i \tau) d\tau, \quad m, n \in \mathbb{N}_0,
\end{equation}
with respect to \(x \geq x_0 > 0 \), easily verified by taking into account the inequality
\begin{equation}
\left| \frac{\partial^m K_{\tau}(x)}{\partial x^m} \right| \leq e^{-\delta \tau} K_m(x \cos \delta), \quad x > 0, \quad \tau > 0, \quad m \in \mathbb{N}_0,
\end{equation}
with \(\delta \in (0, \pi/2) \), permits us to interchange the order between the integral (2.11) and the operator \(A^n \). Hence, appealing to (1.3) combined with (2.11), we derive
\begin{equation}
A^n(e^{-x}x^\alpha) = 2^{1-\alpha} \frac{\pi^{3/2} \Gamma(\alpha + 1/2)}{\Gamma(\alpha + 1/2)} \int_0^\infty \tau^{2n+1} \sinh(\pi \tau) \Gamma(\alpha + i \tau) \Gamma(\alpha - i \tau) K_{\tau}(x) d\tau,
\end{equation}
\(n \in \mathbb{N}_0 \).

Therefore, recalling (1.6), the expression for polynomials \(p_n(x; \alpha) \), we obtain the integral representation
\begin{equation}
p_n(x; \alpha) = (-1)^n 2^{1-\alpha} \frac{\pi^{3/2} \Gamma(\alpha + 1/2)}{\Gamma(\alpha + 1/2)} \int_0^\infty \tau^{2n+1} \sinh(\pi \tau) \Gamma(\alpha + i \tau) \Gamma(\alpha - i \tau) K_{\tau}(x) d\tau,
\end{equation}
\(n \in \mathbb{N}_0 \),

where the latter integral is absolutely convergent for all \(x > 0 \) (see (2.12)).

By setting
\begin{equation}
F_\alpha(u, x) = 2^{1-\alpha} \frac{\pi^{3/2} \Gamma(\alpha + 1/2)}{\Gamma(\alpha + 1/2)} e^{x} x^{-\alpha} \int_0^\infty \cos(\tau u) \tau \sinh(\pi \tau) \Gamma(\alpha + i \tau) \Gamma(\alpha - i \tau) K_{\tau}(x) d\tau
\end{equation}
and by taking into account that \(\frac{\partial^{2n} F_\alpha(u, x)}{\partial u^{2n}}, n \in \mathbb{N}_0 \), is uniformly convergent by \(u \) in \(\mathbb{R} \) via the absolutely convergent integral (2.15), we obtain
\begin{equation}
\lim_{u \to 0} \frac{\partial^{2n} F_\alpha(u, x)}{\partial u^{2n}} = 2^{1-\alpha} (-1)^n e^{x} x^{-\alpha} \int_0^\infty \tau^{2n+1} \sinh(\pi \tau) \Gamma(\alpha + i \tau) \Gamma(\alpha - i \tau) K_{\tau}(x) d\tau = p_n(x; \alpha),
\end{equation}
\(n \in \mathbb{N}_0 \),

whereas
\begin{equation}
\lim_{u \to 0} \frac{\partial^{2n+1} F_\alpha(u, x)}{\partial u^{2n+1}} = 0, \quad n \in \mathbb{N}_0.
\end{equation}

As a consequence, the series representation is allowed:
\begin{equation}
F_\alpha(t, x) = \sum_{n \geq 0} \frac{p_n(x; \alpha)}{(2n)!} t^{2n}.
\end{equation}

We stress that
\begin{equation}
\frac{\partial^2 F_\alpha(u, x)}{\partial u^2} = -e^{x} x^{-\alpha} A e^{-x} x^\alpha F_\alpha(u, x),
\end{equation}
\(A \in \mathbb{R} \).
which, owing to (2.1), corresponds to a second order partial differential equation. Besides, the insertion of (2.19) into this latter relation yields (2.1). Moreover, we have

\[\frac{\partial^{2n} F_\alpha(u, x)}{\partial u^{2n}} = (-1)^n e^x x^{-\alpha} A^n e^{-x} x^\alpha F_\alpha(u, x), \quad n \in \mathbb{N}_0. \]

2.3. Connection with the generalized Euler numbers. We integrate through (2.15) multiplied by \(e^{-2x} x^\alpha e^{-\epsilon} \) with respect to \(x \) over \(\mathbb{R}^+ \), changing the order of integration in its right-hand side due to Fubini’s theorem (use inequality (2.13)). Now, we invoke that, for \(\epsilon \in \mathbb{R} \),

\[\int_0^\infty x^{\alpha-1} e^{-x} K_{i\tau}(x) dx = 2^{-\alpha} \sqrt{\pi} |\Gamma(\epsilon+i\tau)|^2 \Gamma(\epsilon+1/2) \]

to obtain

\[\lim_{\tau \to 0} \int_0^\infty e^{-2x} x^\alpha e^{-\epsilon} p_n(x; \alpha) dx = \lim_{\tau \to 0} \frac{2^{1-\alpha-\epsilon}}{\pi \Gamma(\alpha+1/2) \Gamma(\epsilon+1/2)} \int_0^\infty \tau^{2n+1} \sinh(\pi \tau) \Gamma(\alpha+i\tau) \Gamma(\alpha-i\tau) |\Gamma(\epsilon+i\tau)|^2 d\tau, \quad n \in \mathbb{N}_0, \]

which yields

\[\int_0^\infty e^{-2x} x^\alpha e^{-\epsilon} p_n(x; \alpha) dx = \frac{(-1)^n 2^{1-\alpha}}{\sqrt{\pi} \Gamma(\alpha+1/2)} \int_0^\infty \tau^{2n} \Gamma(\alpha+i\tau) \Gamma(\alpha-i\tau) d\tau, n \in \mathbb{N}_0. \]

We recall the Generalized Euler polynomials \(E_n^{2\alpha}(x) \) [1, Vol. III], [8, 12, 15] defined through

\[\left(\frac{2}{e^x + 1} \right)^{2\alpha} e^{x t} = \sum_{n \geq 0} E_n^{2\alpha}(x) \frac{t^n}{n!}. \]

The particular choice of \(x = \alpha \) gives the identity

\[(\cosh(t/2))^{-2\alpha} = \sum_{n \geq 0} E_n^{2\alpha}(\alpha) \frac{t^n}{n!}. \]

On the other hand [19, (1.104)],

\[(\cosh(u/2))^{-2\alpha} = \frac{2^{2\alpha}}{\pi \Gamma(2\alpha)} \int_0^\infty \cos(\tau u) \Gamma(\alpha+i\tau) \Gamma(\alpha-i\tau) d\tau, \]

providing similarly to (2.17) the equality

\[E_n^{2\alpha}(\alpha) = \lim_{u \to 0} \frac{\partial^{2n}}{\partial u^{2n}} (\cosh(u/2))^{-2\alpha} = \frac{(-1)^n 2^{2\alpha}}{\pi \Gamma(2\alpha)} \int_0^\infty \tau^{2n} \Gamma(\alpha+i\tau) \Gamma(\alpha-i\tau) d\tau, \quad n \in \mathbb{N}_0. \]

Hence, (2.20) together with (2.22) implies

\[E_n^{2\alpha}(\alpha) = \frac{2^{\alpha}}{\Gamma(\alpha)} \int_0^\infty e^{-2x} x^{\alpha-1} p_n(x; \alpha) dx, \quad n \in \mathbb{N}_0, \]

which, according to (1.3), amounts to the same as

\[E_n^{2\alpha}(\alpha) = \frac{2^{\alpha}(1/n)^n}{\Gamma(\alpha)} \int_0^\infty \frac{e^{-x}}{x} A^n e^{-x} x^\alpha dx, \quad n \in \mathbb{N}_0. \]
Lemma 2.3. For any complex parameter \(\alpha \) such that \(\Re(\alpha) > 0 \), the Generalized Euler polynomials of parameter \(2\alpha \), \(E_{n}^{2\alpha}(x) \), are given by

\[
E_{n}^{2\alpha}(x) = x^n + \sum_{k=0}^{n-1} \binom{n}{k} \sum_{\sigma=1}^{n-k} (-2)^{-\sigma} (2\alpha)^{\sigma} S(n-k, \sigma) x^k,
\]

where \(S(k, \tau) \) represents the Stirling numbers of the second kind.

Proof. The \(n \)th order derivative of the left-hand side of (2.21) evaluated at the point \(t = 0 \) furnishes an expression for \(E_{n}^{2\alpha}(x) \). The Leibniz rule for the derivative of the product of two functions permits us to write

\[
\frac{\partial^n}{\partial t^n} \left(\frac{2}{e^t + 1} \right)^{2\alpha} e^{\nu t} \bigg|_{t=0} = \sum_{\nu=0}^{n} \binom{n}{\nu} x^{\nu} \frac{d^{n-\nu}}{dt^{n-\nu}} \left(\frac{2}{e^t + 1} \right)^{2\alpha} \bigg|_{t=0}, \quad n \in \mathbb{N}_0.
\]

According to Faà di Bruno’s formula for the \(k \)th order of derivative of the composition of functions (we refer to [3, Chapter III] for notation and a compendium of results for the Bell polynomials and Faà di Bruno’s formula), for any \(k \geq 1 \), we have

\[
\frac{d^k}{dt^k} \left(\frac{2}{e^t + 1} \right)^{2\alpha} \bigg|_{t=0} = \sum_{\mu=1}^{k} \binom{\alpha}{\mu} (-1)^{\mu} B_{k,\mu} \left(\frac{e^t}{2}, \frac{e^t}{2}, \frac{e^t}{2}, \ldots \right) \bigg|_{t=0},
\]

where \(B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) \), \(1 \leq k \leq n \), represents the Bell polynomials evaluated at the \(n \)-tuple \((x_1, x_2, \ldots, x_n) \). On the basis of the properties of the Bell polynomials it follows that (see [3, p. 135])

\[
B_{k,\mu} \left(\frac{e^t}{2}, \frac{e^t}{2}, \frac{e^t}{2}, \ldots \right) = \left(\frac{e^t}{2} \right)^{\mu} B_{k,\mu}(1, 1, 1, 1, \ldots) = \left(\frac{e^t}{2} \right)^{\mu} S(k, \mu),
\]

with \(S(k, \mu) \) representing the Stirling numbers of the second kind [3, Chapter V]. The insertion of this information into (2.25) ensures that

\[
\frac{d^k}{dt^k} \left(\frac{2}{e^t + 1} \right)^{2\alpha} \bigg|_{t=0} = \sum_{\mu=1}^{k} \binom{\alpha}{\mu} (-2)^{-\mu} S(k, \mu),
\]

whence the result. \(\square \)

With \(x \) taken equal to \(\alpha \) in (2.24), it follows that \(E_{2n+1}^{2\alpha}(\alpha) = 0 \), while

\[
E_{2n}^{2\alpha}(\alpha) = \alpha^{2n} + \sum_{k=0}^{2n-1} \binom{2n}{k} \alpha^{k} \sum_{\sigma=1}^{2n-k} (-2)^{-\sigma} (2\alpha)^{\sigma} S(2n-k, \sigma), \quad n \in \mathbb{N}_0,
\]

are polynomials of degree \(n \) in \(\alpha \). We list a few examples of the (polynomial) sequence \(\{E_{2n}^{2\alpha}(\alpha)\}_{n \geq 0} \):

\[
E_{2}^{2\alpha}(\alpha) = -\frac{\alpha}{2}, \quad E_{4}^{2\alpha}(\alpha) = \frac{3\alpha^2}{4} + \frac{\alpha}{2},
\]

\[
E_{6}^{2\alpha}(\alpha) = -\frac{15\alpha^3}{8} - \frac{15\alpha^2}{8} - \frac{\alpha}{2}, \quad E_{8}^{2\alpha}(\alpha) = \frac{105\alpha^4}{16} + \frac{105\alpha^3}{8} + \frac{147\alpha^2}{16} + \frac{17\alpha}{8}.
\]
2.4. Connection with the Bernoulli polynomials when \(\alpha \) is a positive integer. Consider the (modified) falling factorial of a complex number \(x \),

\[
[x]_n := \left(\prod_{\sigma=0}^{m-1} (x - \sigma^2) \right), \quad n \in \mathbb{N}, \quad \text{and} \quad [x]_0 := 1.
\]

This is actually a polynomial of degree \(n \) whose coefficients in the canonical basis are the so-called 0-modified Stirling numbers of the first kind, denoted by \(\hat{s}_0(n, \nu) \) and treated in [7]. Regarding their importance for the subsequent developments, we recall

\[
[x]_n = \sum_{\nu=0}^{n} \hat{s}_0(n, \nu)x^\nu, \quad n \in \mathbb{N}_0.
\]

This gives grounds for writing \(\Gamma(\alpha + i\tau)\Gamma(\alpha - i\tau) \) whenever \(\alpha = m \in \mathbb{N} \) as follows:

\[
|\Gamma(m + i\tau)|^2 = \left(\prod_{\sigma=0}^{m-1} (\tau^2 + \sigma^2) \right) \frac{\pi}{\tau \sinh(\pi \tau)} = \frac{(-1)^m \pi}{\tau \sinh(\pi \tau)} [\tau^2]_m
\]

\[
= \frac{\pi}{\tau \sinh(\pi \tau)} \sum_{\sigma=0}^{m} (-1)^{m+\sigma} \hat{s}_0(m, \sigma) \tau^{2\sigma}.
\]

As a consequence, the generating function \(F_m(u, x) \) given by (2.16) becomes

\[
F_m(u, x) = C_m \pi x^{-m} e^x \sum_{\sigma=0}^{m} (-1)^{m+\sigma} \hat{s}_0(m, \sigma) \int_0^\infty \tau^{2\sigma} \cos(\tau u) K_{1\tau}(x) d\tau,
\]

which amounts to the same as

\[
F_m(t, x) = C_m (-1)^m x^{-m} \sum_{\sigma=0}^{m} \frac{\pi^2}{2} \hat{s}_0(m, \sigma) \frac{\partial^{2\sigma}}{\partial t^{2\sigma}} (e^{-2x \sinh^2(u/2)})
\]

because of the equality [16] (1.12)]

\[
\int_0^\infty \tau^{2n} \cos(\tau u) K_{1\tau}(x) d\tau = \frac{(-1)^n \pi}{2} \frac{\partial^{2n}}{\partial u^{2n}} e^{-x \cosh(u)}, \quad n \in \mathbb{N}_0.
\]

Concomitantly, the polynomials \(p_n(x; m) \) for \(m \in \mathbb{N} \) are related to \(p_n(x; 0) \) through

\[
x^m p_n(x; m) = C_m (-1)^m \pi^2 x^{-m} \sum_{\sigma=0}^{m} \hat{s}_0(m, \sigma) p_{n+\sigma}(x; 0), \quad n \geq 0,
\]

with \(C_m = \frac{2}{\pi} \cdot \frac{1}{2^m(1/2)_m} \). Recalling [16] (3.14)], we find a connection with the Bernoulli polynomials evaluated at \(\frac{1-i\tau}{2} \):

\[
x^m p_n(x; m) = C_m (-1)^m \pi^2 x^{-m} \sum_{\sigma=0}^{m} \hat{s}_0(m, \sigma) \frac{-2^{2(n+1)} e^x}{(2n+1)\pi i} \times \int_0^\infty \tau K_{1\tau}(x) d\tau , B_{2n+1} \left(\frac{1-i\tau}{2} \right) d\tau, \quad n \geq 0.
\]

Such equality has the merit of deriving analog properties for \(p_n(x; m) \), when \(m \in \mathbb{N} \), to those obtained in [16], namely, the connection with the Bernoulli or Euler numbers as well as the Bernoulli polynomials. For further consideration, we
refer the reader to [16] (3.3), (3.13)-(3.14) and (3.17)]. As a consequence of the aforementioned, we have the following result, which, as far as we are aware, is new in the theory.

Lemma 2.4. The Generalized Euler numbers of parameter \(2m\) and the Bernoulli numbers are related by

\[
E_{2n}^{2m}(m) = \frac{(-1)^{n+m}2^{2m-2}(2m-1)!}{n+\sigma} \sum_{\sigma=0}^{m} \frac{1}{n+\sigma} \bar{s}_0(m,\sigma) B_{2n+2\sigma}, \quad n \in \mathbb{N}_0.
\]

Proof. The relation (3.3) pointed out in [16] furnishes an identity between the Bernoulli numbers and the polynomials \(p_n(x;0)\) by means of an integral

\[
B_{2n} = \frac{n}{1 - 2^{2n}} \int_0^\infty e^{-2x} p_n(x;0) \frac{dx}{x}, \quad n \in \mathbb{N}_0.
\]

The combination of this latter with (2.23) together with (2.28) brings to light the desired equality. □

The forthcoming developments leave aside aspects of the polynomial sequence \(\{p_n(x;\alpha)\}_{n \geq 0}\) itself in order to embrace outer consequences. The study will be essentially focused on the dual sequence corresponding to the monic polynomial sequence, hereafter \(\{P_n(x;\alpha)\}_{n \geq 0}\), obtained from \(\{p_n(x;\alpha)\}_{n \geq 0}\) by dividing each of its elements by the respective leading coefficient:

\[(2.30) \quad P_n(x;\alpha) = \frac{1}{(-2)^n (\alpha + 1/2)_n} p_n(x;\alpha) = \frac{1}{2^n (\alpha + 1/2)_n} e^x x^{-\alpha} A^n e^{-x} x^{\alpha}, \quad n \in \mathbb{N}_0.
\]

3. The Monic Polynomial Sequence and its Corresponding Dual Sequence

As, from now on, we will deal exclusively with the monic polynomial sequences \(\{P_n(x;\alpha)\}_{n \geq 0}\), we recreate the needed properties based on those already obtained for the original sequence. Indeed, in accordance with (2.1), \(\{P_n(x;\alpha)\}_{n \geq 0}\) fulfills

\[(3.1) \quad x^2 P''_n(x;\alpha) - x \left(2x - 1 - 2\alpha\right) P'_n(x;\alpha) - \left((2\alpha + 1)x - \alpha^2\right) P_n(x;\alpha) = -(2n + 2\alpha + 1) P_{n+1}(x;\alpha)
\]

for all \(n \in \mathbb{N}_0\), whereas the equations (2.2)-(2.5) yield

\[(3.2) \quad x P_n(x;\alpha + 1) = P_{n+1}(x;\alpha) + \frac{\alpha^2}{(2n + 2\alpha + 1)} P_n(x;\alpha), \quad n \in \mathbb{N}_0.
\]

In subsection 3.1 we will ferret out properties of the corresponding dual sequence, \(\{u_n(\alpha)\}_{n \geq 0}\), which will trigger some interesting results, namely, the positive-definite character of the canonical element \(u_0(\alpha)\), as will be shown in subsection 3.2.

3.1. The dual sequence

The differential and difference equations satisfied by the MPS \(\{P_n(x;\alpha)\}_{n \geq 0}\) enable the differential and difference equations fulfilled by the corresponding dual sequence \(\{u_n(\alpha)\}_{n \geq 0}\).
Lemma 3.1. The dual sequence \(\{u_n(\alpha)\}_{n \geq 0} \) associated to \(\{P_n(x; \alpha)\}_{n \geq 0} \) is such that
\[
(3.3) \quad \left((x^2 u_0(\alpha))' + x(2x - (1 + 2\alpha)) u_0(\alpha) \right)' - ((1 + 2\alpha)x - \alpha^2) u_0(\alpha) = 0,
\]
\[
(3.4) \quad (x^2 u_{n+1}(\alpha))' + x(2x - (1 + 2\alpha)) u_{n+1}(\alpha) \right)' - ((1 + 2\alpha)x - \alpha^2) u_{n+1}(\alpha) = -(2n + 2\alpha + 1) u_n(\alpha)
\]
for \(n \in \mathbb{N}_0 \). Moreover the moments of the canonical form \(u_0 \) are given by
\[
(3.5) \quad (u_0(\alpha))_n = \frac{\lbrack \alpha \rbrack^2}{2^n (\alpha + 1/2)_n}, \quad n \in \mathbb{N}_0.
\]
Proof. The action of \(u_0 \) over the relation \((3.4) \) furnishes
\[
\langle u_0(\alpha), -x^2 P''_n(x) + x(2x - (1 + 2\alpha)) P'_n(x) + (2\alpha + 1)x - \alpha^2 \rangle P_n(x) = 0, \quad n \geq 0,
\]
which, by transposition in accordance with \((1.8) \), becomes
\[
\langle -(x^2 u_0(\alpha))'', (x(2x - 1 - 2\alpha) u_0(\alpha))' + (2\alpha + 1)x - \alpha^2 \rangle u_0(\alpha), \quad P_n(x) \rangle = 0,
\]
whence \((3.3) \). Likewise, the action of \(u_{k+1} \) over \((3.4) \) provides
\[
\langle u_{k+1}(\alpha), -x^2 P''_n(x) + x(2x - (1 + 2\alpha)) P'_n(x) + (2\alpha + 1)x - \alpha^2 \rangle P_n(x) = (2n + 2\alpha + 1) \delta_{n,k}, \quad n \geq 0,
\]
and, again, by transposition, this latter leads to
\[
\langle -(x^2 u_{k+1}(\alpha))'', (x(2x - 1 - 2\alpha) u_{k+1}(\alpha))' + (2\alpha + 1)x - \alpha^2 \rangle u_{k+1}(\alpha), \quad P_n(x) \rangle = (2n + 2\alpha + 1) \delta_{n,k}, \quad n \geq 0.
\]
Therefore, according to \((1.7) \), we derive \((3.4) \). On the other hand, the action of both sides of \((3.3) \) over each element of the sequence \(\{x^n\}_{n \geq 0} \) leads to the following difference equation having the moments of \(u_0(\alpha) \) as the solution:
\[
(2n + 2\alpha + 1) (u_0(\alpha))_{n+1} = -(n + \alpha)^2 (u_0(\alpha))_n, \quad n \in \mathbb{N}_0,
\]
providing \((3.5) \). □

In addition, according to \((1.7) \), we have as well
\[
x u_0(\alpha) = \sum_{n \geq 0} \langle x u_0(\alpha), P_n(x; \alpha + 1) \rangle u_n(\alpha + 1).
\]
Considering \((1.8) \) and \((3.2) \), it follows that
\[
\langle x u_0(\alpha), P_n(x; \alpha + 1) \rangle = \langle u_0(\alpha), P_{n+1}(x; \alpha) \rangle + \frac{\alpha^2}{2n + 2\alpha + 1} \delta_{n,0},
\]
which holds for any \(n \in \mathbb{N}_0 \). Therefore the two forms \(u_0(\alpha) \) and \(u_0(\alpha + 1) \) are related by
\[
(3.6) \quad x u_0(\alpha) = \frac{\alpha^2}{2\alpha + 1} u_0(\alpha + 1).
\]
The question of whether the MPS \(\{P_n(x;\alpha)\}_{n \geq 0} \) can be orthogonal arises in a natural way and, concomitantly, of whether the form \(u_0(\alpha) \) is or is not regular.

As a matter of fact, we recall that a form \(v \) is said to be regular if we can associate with it a PS \(\{Q_n\}_{n \geq 0} \) such that \(\langle v, Q_nQ_m \rangle = k_n\delta_{n,m} \) with \(k_n \neq 0 \) for all \(n, m \in \mathbb{N}_0 \) \cite{9 10}. The PS \(\{Q_n\}_{n \geq 0} \) is then said to be orthogonal with respect to \(v \), and we can assume the system (of orthogonal polynomials) to be monic. Therefore, we can set \(v = v_0 \), and the remaining elements of the corresponding dual sequence \(\{v_n\}_{n \geq 0} \) are represented by

\[
(3.7) \quad v_{n+1} = (\langle v_0, Q^2_{n+1}(\cdot) \rangle)^{-1} Q_{n+1}(x)v_0, \quad n \in \mathbb{N}_0.
\]

Moreover, when \(v \in \mathcal{P}' \) is regular, let \(\Phi \) be a polynomial such that \(\Phi v = 0 \); then \(\Phi = 0 \) \cite{9 10}.

In this case we call this unique MPS \(\{Q_n(x)\}_{n \geq 0} \) a monic orthogonal polynomial sequence, hereafter MOPS, and it can be characterized by the popular second order recurrence relation

\[
(3.8) \quad \begin{cases}
Q_0(x;\alpha) = 1; & Q_1(x;\alpha) = x - \beta_0(\alpha), \\
Q_{n+2}(x;\alpha) = (x - \beta_{n+1}(\alpha))Q_{n+1}(x;\alpha) - \gamma_{n+1}(\alpha)Q_n(x;\alpha), & n \in \mathbb{N}_0.
\end{cases}
\]

Here, we consider the dependence on the complex parameter \(\alpha \) to avoid repetition of similar formulas. We will systematically refer to the pair \((\beta_n(\alpha), \gamma_{n+1}(\alpha))_{n \geq 0} \) as the recurrence coefficients of \(\{Q_n(x;\alpha)\}_{n \geq 0} \), necessarily fulfilling \(\gamma_{n+1}(\alpha) \neq 0, \ n \geq 0 \). See \cite{9 10} for notation and a compendium of results about algebraic properties of orthogonal polynomial sequences along with regular forms.

As expected, we have the following result.

Lemma 3.2. The MPS \(\{P_n(x;\alpha)\}_{n \geq 0} \) cannot be regularly orthogonal.

Proof. Under the assumption that \(\{P_n(x;\alpha)\}_{n \geq 0} \) defined through \((2.30) \) is orthogonal, we may insert relation \((3.7) \), with \(v_n \) replaced by \(u_n(\alpha) \) and \(Q_n \) by \(P_n(\cdot;\alpha) \), into \((3.4) \), which provides

\[
(3.9) \quad \left((x^2P_{n+1}(x;\alpha)u_0(\alpha))' + x(2x - (1 + 2\alpha))P_{n+1}(x;\alpha)u_0(\alpha) \right)'
- (1 + 2\alpha)x - \lambda_n(\alpha)P_n(x;\alpha)u(\alpha), \quad n \in \mathbb{N}_0,
\]

where \(\lambda_n(\alpha) = (2n + 2\alpha + 1)\langle u_0(\alpha), P^2_{n+1}(x;\alpha) \rangle (\langle u_0(\alpha), P^2_n(x;\alpha) \rangle)^{-1} \), for all \(n \in \mathbb{N}_0 \). Taking into account \((3.3), (3.9) \) implies the differential equation

\[
2P'_{n+1}(x;\alpha)(x^2u_0(\alpha))' + \left(x^2P''_{n+1}(x;\alpha) + x(2x - (1 + 2\alpha))P'_{n+1}(x;\alpha)\right)u_0(\alpha)
= \lambda_n(\alpha)P_n(x;\alpha)u_0(\alpha), \quad n \geq 0.
\]

When the equation obtained by the particular choice of \(n = 0 \), i.e.

\[
2(x^2u_0(\alpha))' + x(2x - (1 + 2\alpha))u_0(\alpha) = \lambda_0(\alpha)u_0(\alpha),
\]

is inserted into the original equation, we obtain

\[
(x^2P''_{n+1}(x;\alpha))u_0(\alpha) = \left(\lambda_n(\alpha)P_n(x;\alpha) - \lambda_0(\alpha)P'_{n+1}(x;\alpha)\right)u_0(\alpha).
\]

The regularity of \(u_0(\alpha) \) would now imply the condition

\[
x^2P''_{n+1}(x;\alpha) = \lambda_n(\alpha)P_n(x;\alpha) - \lambda_0(\alpha)P'_{n+1}(x;\alpha), \quad n \geq 0,
\]

contradicting \(\deg P_n(x;\alpha) = n \) and therefore crumbling the possibility of \(\{P_n(x;\alpha)\} \) being orthogonal. \(\square \)
Remark 3.3. The latter result ensures that \(\{P_n(x; \alpha)\}_{n \geq 0} \) does not fulfill a second order recurrence relation \((3.8)\) and therefore cannot be an orthogonal polynomial sequence with respect to an \(L_2\)-inner product, but it still can be orthogonal with respect to another inner product, such as a Sobolev inner product. We leave the problem of finding such an inner product to be unraveled.

Despite the non-(regular)orthogonality of \(\{P_n(x; \alpha)\}_{n \geq 0} \) with respect to the form \(u_0(\alpha) \), we cannot exclude the existence of an orthogonal polynomial sequence, say \(\{Q_n(x; \alpha)\}_{n \geq 0} \), with respect to \(u_0(\alpha) \), which amounts to the same as ensuring the regularity of \(u_0(\alpha) \). This question is handled in the next subsection.

3.2. About the regularity of \(u_0 \). We begin by rewriting \((3.3)\) as follows:

\[
(\phi u_0(\alpha))' + \psi u_0(\alpha) + \chi u_0(\alpha) = 0
\]

with

\[
\phi(x) := \phi(x; \alpha) = x^2, \quad \psi(x) := \psi(x; \alpha) = x(2x - 2\alpha - 1), \\
\chi(x) := \chi(x; \alpha) = -(2\alpha + 1)x + \alpha^2.
\]

Actually, while seeking an integral representation for \(u_0(\alpha) \), we realize that it is indeed regular.

Lemma 3.4. For any positive real value of the parameter \(\alpha \), the form \(u_0(\alpha) \) is positive definite (therefore regular), admitting the integral representation

\[
\langle u_0, f(x) \rangle = \frac{2^n \Gamma(\alpha + 1/2)}{\sqrt{\pi} \Gamma^2(\alpha)} \int_0^{+\infty} f(x) e^{-x} x^{\alpha-1} K_0(x) \, dx, \quad \forall f \in \mathcal{P}.
\]

Proof. We seek a function \(U(x) := U(x; \alpha) \) such that \((3.12)\) holds in a certain domain \(C \). Since \(\langle u_0, 1 \rangle = 1 \neq 0 \), we must have

\[
\int_C U(x) \, dx = 1 \neq 0.
\]

By virtue of \((3.10)\), we have, for any \(f \in \mathcal{P} \),

\[
0 = \langle (\phi(x)u_0)' + \psi(x)u_0, f(x) \rangle + \chi(x)u_0, f(x) \rangle \\
= \langle u_0, \phi(x)f''(x) + \psi(x)f'(x) + \chi(x)f(x) \rangle \\
= \int_C ((\phi(x)U(x))'' + (\psi(x)U(x))' + \chi(x)U(x)) f(x) \, dx \\
- \int_C ((\phi(x)U(x))'' + (\psi(x)U(x))' + \chi(x)U(x)) f(x) - (\phi(x)U(x))' f(x) - \psi(x)U(x)f(x) \rangle |_C
\]

Therefore, \(U(x) \) is a function simultaneously fulfilling

\[
\int_C ((\phi(x)U(x))'' + (\psi(x)U(x))' + \chi(x)U(x)) f(x) \, dx = 0, \quad \forall f \in \mathcal{P},
\]

\[
\int_C ((\phi(x)U(x))' f(x) - (\phi(x)U(x))' f(x) - \psi(x)U(x)f(x) \rangle |_C = 0, \quad \forall f \in \mathcal{P}.
\]

The first equation implies

\[
(\phi(x)U(x))'' + (\psi(x)U(x))' + \chi(x)U(x) = \lambda g(x),
\]
where λ is a complex number and $g(x) \neq 0$ is a function representing the null form, that is, a function such that

$$\int_C g(x)f(x)dx = 0, \quad \forall f \in \mathcal{P}.$$

We begin by choosing $\lambda = 0$ and we search a regular solution of the differential equation

$$(\phi(x)U(x))'' + (\psi(x)U(x))' + \chi(x)U(x) = 0.$$

Upon the change of variable $U(x) = e^{-x}x^{\alpha-1}y(x)$ we have

$$x^2y''(x) + xy'(x) - x^2y(x) = 0 \iff \mathcal{A}(y(x)) = 0,$$

whose general solution is $y(x) = c_1I_0(x) + c_2K_0(x), \ x \geq 0$, for some arbitrary constants c_1, c_2 and $y(x) = 0$ when $x < 0$. As a consequence

$$U(x) = e^{-x}x^{\alpha-1}\left\{c_1I_0(x) + c_2K_0(x)\right\}, \ x \geq 0.$$

Insofar as $U(x)$ must be a rapidly decreasing sequence (that is, such that $\lim_{x \to +\infty} f(x)U(x) = 0$ for any polynomial f), we set $c_1 = 0$ and $c_2 \neq 0$ and we write $U(x) = c_2e^{-x}x^{\alpha-1}K_0(x), \ x \in C = [0, +\infty[\text{ with } c_2$ set in order to realize (3.14), which amounts to the same as $c_2 = \frac{2^{\alpha} \Gamma(\alpha + 1/2)}{\sqrt{\pi} \Gamma(\alpha)^2}$. In this case $U(x)$ also fulfills condition (3.13) as long as $\alpha > 0$ because $\int_0^{+\infty} e^{-x}x^{\alpha-1}K_0(x)dx$ is a strictly positive convergent integral. Besides, since $K_\nu(x)$ has asymptotic behaviour with respect to x [1 Vol. II], [19],

$$K_\nu(x) = \left(\frac{\pi}{2x}\right)^{1/2} e^{-x}[1 + O(1/x)], \ x \to +\infty,$$

$$K_\nu(x) = O(x^{-\Re(\nu)}), \quad K_0(x) = O(-\log x), \ x \to 0,$$

we immediately deduce that (3.15) is fulfilled by any element of the PS $\{x^n\}_{n \geq 0}$ (that spans \mathcal{P}) and hence is fulfilled by any element f of \mathcal{P}. Moreover, for every polynomial $g(x)$ that is not identically zero and is non-negative for all real x, we have

$$\{u_0, g(x)\} = \frac{2^{\alpha} \Gamma(\alpha + 1/2)}{\sqrt{\pi} \Gamma(\alpha)^2} \int_0^{+\infty} g(x) e^{-x}x^{\alpha-1}K_0(x) \ dx > 0,$$

and therefore u_0 is a positive-definite form. This implies that u_0 has real moments and a corresponding MOPS exists (i.e., u_0 is a regular form).

The regularity of $u_0(\alpha)$ raises the problem of characterizing a corresponding orthogonal polynomial sequence, say $\{Q_n(x; \alpha)\}_{n \geq 0}$, whenever α is a positive real number. From this point forward we consider $\alpha \in \mathbb{R}^+$.

Entailed in the question of characterizing the arisen MOPS $\{Q_n(x; \alpha)\}_{n \geq 0}$ (with respect to $u_0(\alpha)$) comes the problem of determining the associated recurrence coefficients or even a differential equation fulfilled by $\{Q_n(x; \alpha)\}_{n \geq 0}$ or an analogue of Rodrigues’ formula or a generating function. However, this has been revealed to be a tricky problem to solve, recalling other open problems such as the one posed by Prudnikov [1]. Indeed, the difficult part of this problem is connected to the fact that the regular form $u_0(\alpha)$ is a solution of a differential equation of order higher than one. As far as we can tell, the gap in the theory concerned with this problem
prevents us from attaining further results. Notwithstanding this, based on the work [11], it is possible to reach a finite-type relation (of order two actually) between the two MOPSs \(\{Q_n(x; \alpha)\}_{n \geq 0} \) and \(\{Q_n(x; \alpha + 1)\}_{n \geq 0} \). Again, this adds very little to the solution of the problem.

The recurrence coefficients \((\beta_n(\alpha), \gamma_{n+1}(\alpha))_{n \geq 0} \) associated to the second order recurrence relation (3.8) fulfilled by \(\{Q_n(\cdot; \alpha)\}_{n \geq 0} \) may be successively computed either by means of the weight function or by using the Hankel determinant of the moments of \(u_0(\alpha) \) [2]. Making use of the first process, for each positive integer \(n \) we have

\[
\beta_n(\alpha) = \frac{\langle u_0(\alpha), x Q_n^2(x; \alpha) \rangle}{\langle u_0(\alpha), Q_n^2(x; \alpha) \rangle} = \frac{\int_0^{+\infty} Q_n(x; \alpha) e^{-x} x^\alpha K_0(x) \, dx}{\int_0^{+\infty} Q_n^2(x; \alpha) e^{-x} x^{\alpha-1} K_0(x) \, dx},
\]

(3.16)

\[
\gamma_{n+1}(\alpha) = \frac{\langle u_0(\alpha), Q_{n+1}^2(x; \alpha) \rangle}{\langle u_0(\alpha), Q_n^2(x; \alpha) \rangle} = \frac{\int_0^{+\infty} Q_{n+1}(x; \alpha) e^{-x} x^\alpha K_0(x) \, dx}{\int_0^{+\infty} Q_n^2(x; \alpha) e^{-x} x^{\alpha-1} K_0(x) \, dx},
\]

(3.17)

According to the latter, we list the first elements:

\[
\beta_0(\alpha) = \frac{\alpha^2}{2\alpha + 1},
\]

\[
\beta_1(\alpha) = \frac{\alpha(2\alpha(\alpha + 4) + 7)(\alpha(2\alpha + 5) + 4) + 4}{(2\alpha + 1)(2\alpha + 5)(2\alpha + 2 + 1)},
\]

\[
\gamma_1(\alpha) = \frac{\alpha^2(2\alpha(\alpha + 2) + 1)}{(2\alpha + 1)^2(2\alpha + 3)},
\]

\[
\gamma_2(\alpha) = \frac{4(\alpha + 1)^2(2\alpha + 1)(\alpha(2\alpha(2\alpha(\alpha + 12) + 113) + 262) + 613) + 325) + 51}{(2\alpha + 3)(2\alpha + 5)^2(2\alpha + 7)(2\alpha + 2 + 1)^2}.
\]

The determination of recurrence coefficients of higher order has indeed been revealed to be a ticklish problem.

REFERENCES

CMUP and DM-FCUP, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
E-mail address: anafsl@fc.up.pt
Current address: School of Mathematics, Statistics & Actuarial Science (SMSAS), Cornwallis Building, University of Kent, Canterbury, Kent, CT2 7NP, United Kingdom
E-mail address: A.Loureiro@kent.ac.uk

CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
E-mail address: maroni@ann.jussieu.fr

CMUP and DM-FCUP, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
E-mail address: syakubov@fc.up.pt

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use