Mock Morrey spaces
HTML articles powered by AMS MathViewer
- by David R. Adams
- Proc. Amer. Math. Soc. 142 (2014), 881-886
- DOI: https://doi.org/10.1090/S0002-9939-2013-11303-1
- Published electronically: November 27, 2013
- PDF | Request permission
Abstract:
For any function $f$ belonging to $Q^{p,\lambda }$, a certain proper subspace of the classical Morrey space $L^{p, \lambda }$, a sharp capacity weak-type estimate is obtained for its Riesz potential $I_{\alpha } f$. This extends a 1969 result due to Franco Conti.References
- David R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), no. 4, 765–778. MR 458158
- David R. Adams, On the existence of capacitary strong type estimates in $R^{n}$, Ark. Mat. 14 (1976), no. 1, 125–140. MR 417774, DOI 10.1007/BF02385830
- D.R. Adams. Lectures on $L^p$-potential theory. Dept. Math., University of Umeå, Sweden, 1981.
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441, DOI 10.1007/978-3-662-03282-4
- David R. Adams and Jie Xiao, Nonlinear potential analysis on Morrey spaces and their capacities, Indiana Univ. Math. J. 53 (2004), no. 6, 1629–1663. MR 2106339, DOI 10.1512/iumj.2004.53.2470
- David R. Adams and Jie Xiao, Morrey spaces in harmonic analysis, Ark. Mat. 50 (2012), no. 2, 201–230. MR 2961318, DOI 10.1007/s11512-010-0134-0
- David R. Adams and Jie Xiao, Morrey potentials and harmonic maps, Comm. Math. Phys. 308 (2011), no. 2, 439–456. MR 2851148, DOI 10.1007/s00220-011-1319-5
- David R. Adams and Jie Xiao, Regularity of Morrey commutators, Trans. Amer. Math. Soc. 364 (2012), no. 9, 4801–4818. MR 2922610, DOI 10.1090/S0002-9947-2012-05595-4
- Filippo Chiarenza and Michele Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), no. 3-4, 273–279 (1988). MR 985999
- Franco Conti, Su alcuni spazi funzionali e loro applicazioni ad equazioni differenziali di tipo ellittico, Boll. Un. Mat. Ital. (4) 2 (1969), 554–569 (Italian, with English summary). MR 0264388
- Björn E. J. Dahlberg, Regularity properties of Riesz potentials, Indiana Univ. Math. J. 28 (1979), no. 2, 257–268. MR 523103, DOI 10.1512/iumj.1979.28.28018
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- V. G. Maz′ya and T. O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Monographs and Studies in Mathematics, vol. 23, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 785568
- Vladimir G. Maz’ya and Tatyana O. Shaposhnikova, Theory of Sobolev multipliers, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 337, Springer-Verlag, Berlin, 2009. With applications to differential and integral operators. MR 2457601
- Vladimir G. Maz′ya and Igor E. Verbitsky, Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers, Ark. Mat. 33 (1995), no. 1, 81–115. MR 1340271, DOI 10.1007/BF02559606
- Charles B. Morrey Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166. MR 1501936, DOI 10.1090/S0002-9947-1938-1501936-8
- Jaak Peetre, On the theory of ${\cal L}_{p},\,_{\lambda }$ spaces, J. Functional Analysis 4 (1969), 71–87. MR 0241965, DOI 10.1016/0022-1236(69)90022-6
- Guido Stampacchia, Some limit cases of $L^{p}$-estimates for solutions of second order elliptic equations, Comm. Pure Appl. Math. 16 (1963), 505–510. MR 152735, DOI 10.1002/cpa.3160160409
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Bibliographic Information
- David R. Adams
- Affiliation: Department of Mathematics, University of Kentucky, 937 Patterson Office Tower, Lexington, Kentucky 40506-0027
- Email: davea@uky.edu
- Received by editor(s): April 8, 2011
- Received by editor(s) in revised form: June 8, 2011
- Published electronically: November 27, 2013
- Communicated by: Michael T. Lacey
- © Copyright 2013 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 881-886
- MSC (2010): Primary 35B15, 42B37
- DOI: https://doi.org/10.1090/S0002-9939-2013-11303-1
- MathSciNet review: 3148522
Dedicated: This paper is dedicated to the memory of Guido Stampacchia 1922–1978