Minimal $N$-point diameters and $f$-best-packing constants in $\mathbb {R}^d$
HTML articles powered by AMS MathViewer
- by A. V. Bondarenko, D. P. Hardin and E. B. Saff
- Proc. Amer. Math. Soc. 142 (2014), 981-988
- DOI: https://doi.org/10.1090/S0002-9939-2013-11657-6
- Published electronically: December 11, 2013
- PDF | Request permission
Abstract:
In terms of the minimal $N$-point diameter $D_d(N)$ for $\mathbb {R}^d,$ we determine, for a class of continuous real-valued functions $f$ on $[0,+\infty ],$ the $N$-point $f$-best-packing constant $\min \{f(\|x-y\|) : x,y\in \mathbb {R}^d\}$, where the minimum is taken over point sets of cardinality $N.$ We also show that \[ N^{1/d}\Delta _d^{-1/d}-2\le D_d(N)\le N^{1/d}\Delta _d^{-1/d}, \quad N\ge 2,\] where $\Delta _d$ is the maximal sphere packing density in $\mathbb {R}^d$. Further, we provide asymptotic estimates for the $f$-best-packing constants as $N\to \infty$.References
- Paul Bateman and Paul Erdös, Geometrical extrema suggested by a lemma of Besicovitch, Amer. Math. Monthly 58 (1951), 306–314. MR 41466, DOI 10.2307/2307717
- András Bezdek and Ferenc Fodor, Minimal diameter of certain sets in the plane, J. Combin. Theory Ser. A 85 (1999), no. 1, 105–111. MR 1659440, DOI 10.1006/jcta.1998.2889
- Károly Böröczky Jr., Finite packing and covering, Cambridge Tracts in Mathematics, vol. 154, Cambridge University Press, Cambridge, 2004. MR 2078625, DOI 10.1017/CBO9780511546587
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- S. V. Borodachev, È. B. Saff, and D. P. Khardin, Asymptotics of densest weighted packing on rectifiable sets, Mat. Sb. 199 (2008), no. 11, 3–20 (Russian, with Russian summary); English transl., Sb. Math. 199 (2008), no. 11-12, 1579–1595. MR 2485373, DOI 10.1070/SM2008v199n11ABEH003973
- Henry Cohn and Noam Elkies, New upper bounds on sphere packings. I, Ann. of Math. (2) 157 (2003), no. 2, 689–714. MR 1973059, DOI 10.4007/annals.2003.157.689
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- P. Erdős, Some combinational problems in geometry, Geometry and differential geometry (Proc. Conf., Univ. Haifa, Haifa, 1979), Lecture Notes in Math., vol. 792, Springer, Berlin, 1980, pp. 46–53. MR 585852
- L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXV, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). MR 0057566
- Thomas C. Hales, A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), no. 3, 1065–1185. MR 2179728, DOI 10.4007/annals.2005.162.1065
- R. A. Rankin, On the closest packing of spheres in $n$ dimensions, Ann. of Math. (2) 48 (1947), 1062–1081. MR 22570, DOI 10.2307/1969393
- Achill Schürmann, On extremal finite packings, Discrete Comput. Geom. 28 (2002), no. 3, 389–403. MR 1923959, DOI 10.1007/s00454-002-0747-6
- P. Urysohn, Mittlere Breite and Volumen der konvexen Korper im n-dimensionalen, Raume. Matem. Sb. SSSR 31 (1924), 477-486.
Bibliographic Information
- A. V. Bondarenko
- Affiliation: Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain — and — Department of Mathematical Analysis, National Taras Shevchenko University, str. Volodymyrska 64, Kyiv, 01033, Ukraine
- Address at time of publication: Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- MR Author ID: 763910
- Email: andriybond@gmail.com
- D. P. Hardin
- Affiliation: Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 81245
- ORCID: 0000-0003-0867-2146
- Email: Doug.Hardin@Vanderbilt.Edu
- E. B. Saff
- Affiliation: Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 152845
- Email: Edward.B.Saff@Vanderbilt.Edu
- Received by editor(s): November 3, 2010
- Received by editor(s) in revised form: November 1, 2011, and April 17, 2012
- Published electronically: December 11, 2013
- Additional Notes: The research of the first author was conducted while visiting the Center for Constructive Approximation in the Department of Mathematics, Vanderbilt University
The research of all the authors was supported, in part, by the U.S. National Science Foundation under grant DMS-0808093 - Communicated by: Jim Haglund
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 981-988
- MSC (2010): Primary 52C17
- DOI: https://doi.org/10.1090/S0002-9939-2013-11657-6
- MathSciNet review: 3148532