A reduced set of moves on one-vertex ribbon graphs coming from links
HTML articles powered by AMS MathViewer
- by Susan Abernathy, Cody Armond, Moshe Cohen, Oliver T. Dasbach, Hannah Manuel, Chris Penn, Heather M. Russell and Neal W. Stoltzfus
- Proc. Amer. Math. Soc. 142 (2014), 737-752
- DOI: https://doi.org/10.1090/S0002-9939-2013-11807-1
- Published electronically: November 18, 2013
- PDF | Request permission
Abstract:
Every link in $\mathbb {R}^3$ can be represented by a one-vertex ribbon graph. We prove a Markov type theorem on this subset of link diagrams.References
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Dror Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002), 337–370. MR 1917056, DOI 10.2140/agt.2002.2.337
- Béla Bollobás and Oliver Riordan, A polynomial invariant of graphs on orientable surfaces, Proc. London Math. Soc. (3) 83 (2001), no. 3, 513–531. MR 1851080, DOI 10.1112/plms/83.3.513
- Moshe Cohen, Oliver T. Dasbach, and Heather M. Russell, A twisted dimer model for knots, arXiv:1010.5228v2 (2010), 1–16.
- Abhijit Champanerkar, Ilya Kofman, and Neal Stoltzfus, Quasi-tree expansion for the Bollobás-Riordan-Tutte polynomial, Bull. Lond. Math. Soc. 43 (2011), no. 5, 972–984. MR 2854567, DOI 10.1112/blms/bdr034
- Oliver T. Dasbach, David Futer, Efstratia Kalfagianni, Xiao-Song Lin, and Neal W. Stoltzfus, The Jones polynomial and graphs on surfaces, J. Combin. Theory Ser. B 98 (2008), no. 2, 384–399. MR 2389605, DOI 10.1016/j.jctb.2007.08.003
- Oliver T. Dasbach, David Futer, Efstratia Kalfagianni, Xiao-Song Lin, and Neal W. Stoltzfus, Alternating sum formulae for the determinant and other link invariants, J. Knot Theory Ramifications 19 (2010), no. 6, 765–782. MR 2665767, DOI 10.1142/S021821651000811X
- Oliver T. Dasbach and Adam M. Lowrance, A Turaev surface approach to Khovanov homology, arXiv:1107.2344 (2011), 1–30.
- Louis H. Kauffman, On knots, Annals of Mathematics Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987. MR 907872
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- W. B. Raymond Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR 1472978, DOI 10.1007/978-1-4612-0691-0
- V. O. Manturov, Knots and the bracket calculus, Acta Appl. Math. 74 (2002), no. 3, 293–336. MR 1942533, DOI 10.1023/A:1021154925574
- Ciprian Manolescu, Peter Ozsváth, and Sucharit Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. (2) 169 (2009), no. 2, 633–660. MR 2480614, DOI 10.4007/annals.2009.169.633
- V. G. Turaev, A simple proof of the Murasugi and Kauffman theorems on alternating links, Enseign. Math. (2) 33 (1987), no. 3-4, 203–225. MR 925987
- Pierre Vogel, Representation of links by braids: a new algorithm, Comment. Math. Helv. 65 (1990), no. 1, 104–113. MR 1036132, DOI 10.1007/BF02566597
Bibliographic Information
- Susan Abernathy
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: sabern1@tigers.lsu.edu
- Cody Armond
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Address at time of publication: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
- MR Author ID: 1039228
- Email: cody-armond@uiowa.edu
- Moshe Cohen
- Affiliation: Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel
- Email: cohenm10@macs.biu.ac.il
- Oliver T. Dasbach
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 612149
- Email: kasten@math.lsu.edu
- Hannah Manuel
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Address at time of publication: Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- Email: hmanuel3@math.gatech.edu
- Chris Penn
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: coffee@math.lsu.edu
- Heather M. Russell
- Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
- Address at time of publication: Department of Mathematics and Computer Science, Washington College, Chestertown, Maryland 21620
- Email: hrussell2@washcoll.edu
- Neal W. Stoltzfus
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: stoltz@math.lsu.edu
- Received by editor(s): December 21, 2011
- Received by editor(s) in revised form: April 2, 2012
- Published electronically: November 18, 2013
- Communicated by: Daniel Ruberman
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 737-752
- MSC (2010): Primary 05C10, 57M15, 57M25
- DOI: https://doi.org/10.1090/S0002-9939-2013-11807-1
- MathSciNet review: 3148509