Lie inner ideals are nearly Jordan inner ideals
HTML articles powered by AMS MathViewer
- by Antonio Fernández López
- Proc. Amer. Math. Soc. 142 (2014), 795-804
- DOI: https://doi.org/10.1090/S0002-9939-2013-11809-5
- Published electronically: December 4, 2013
- PDF | Request permission
Abstract:
In this note we extend the Lie inner ideal structure of simple Artinian rings developed by Benkart to centrally closed prime algebras $A$. New Lie inner ideals, which we call nonstandard, occur when making this extension. A necessary and sufficient condition for $A$ to have a nonstandard inner ideal is the existence in $A$ of a zero square element which is not von Neumann regular. Our main tool is a theorem due to Martindale and Miers on the iterates of the derivations of prime rings.References
- K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, vol. 196, Marcel Dekker, Inc., New York, 1996. MR 1368853
- Georgia Benkart, The Lie inner ideal structure of associative rings, J. Algebra 43 (1976), no. 2, 561–584. MR 435149, DOI 10.1016/0021-8693(76)90127-7
- Georgia Benkart, On inner ideals and ad-nilpotent elements of Lie algebras, Trans. Amer. Math. Soc. 232 (1977), 61–81. MR 466242, DOI 10.1090/S0002-9947-1977-0466242-6
- Arjeh M. Cohen, Gábor Ivanyos, and Dan Roozemond, Simple Lie algebras having extremal elements, Indag. Math. (N.S.) 19 (2008), no. 2, 177–188. MR 2489325, DOI 10.1016/S0019-3577(09)00003-2
- Cristina Draper, Antonio Fernández López, Esther García, and Miguel Gómez Lozano, The socle of a nondegenerate Lie algebra, J. Algebra 319 (2008), no. 6, 2372–2394. MR 2388311, DOI 10.1016/j.jalgebra.2007.10.042
- C. Draper, A. Fernández López, E. García, and M. Gómez Lozano, The inner ideals of the simple finite dimensional Lie algebras, J. Lie Theory 22 (2012), no. 4, 907–929. MR 3052677
- John R. Faulkner, On the geometry of inner ideals, J. Algebra 26 (1973), 1–9. MR 367002, DOI 10.1016/0021-8693(73)90032-X
- Antonio Fernández López, Esther García, and Miguel Gómez Lozano, The Jordan socle and finitary Lie algebras, J. Algebra 280 (2004), no. 2, 635–654. MR 2089256, DOI 10.1016/j.jalgebra.2004.06.013
- Antonio Fernández López, Esther García, and Miguel Gómez Lozano, Inner ideals of finitary simple Lie algebras, J. Lie Theory 16 (2006), no. 1, 97–114. MR 2196417
- Antonio Fernández López, Esther García, and Miguel Gómez Lozano, The Jordan algebras of a Lie algebra, J. Algebra 308 (2007), no. 1, 164–177. MR 2290916, DOI 10.1016/j.jalgebra.2006.02.035
- Antonio Fernández López, Esther García, and Miguel Gómez Lozano, An Artinian theory for Lie algebras, J. Algebra 319 (2008), no. 3, 938–951. MR 2379087, DOI 10.1016/j.jalgebra.2007.10.038
- Antonio Fernández López, Esther García, Miguel Gómez Lozano, and Erhard Neher, A construction of gradings of Lie algebras, Int. Math. Res. Not. IMRN 16 (2007), Art. ID rnm051, 34. MR 2353091, DOI 10.1093/imrn/rnm051
- Antonio Fernández López and Eulalia García Rus, Inner ideals in quadratic Jordan algebras of infinite capacity, Int. J. Math. Game Theory Algebra 9 (1999), no. 1, 35–54. MR 1697472
- Ottmar Loos, Jordan pairs, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-New York, 1975. MR 0444721, DOI 10.1007/BFb0080843
- Ottmar Loos and Erhard Neher, Complementation of inner ideals in Jordan pairs, J. Algebra 166 (1994), no. 2, 255–295. MR 1279257, DOI 10.1006/jabr.1994.1151
- W. S. Martindale III and C. Robert Miers, On the iterates of derivations of prime rings, Pacific J. Math. 104 (1983), no. 1, 179–190. MR 683736, DOI 10.2140/pjm.1983.104.179
- Kevin McCrimmon, Inner ideals in quadratic Jordan algebras, Trans. Amer. Math. Soc. 159 (1971), 445–468. MR 279145, DOI 10.1090/S0002-9947-1971-0279145-1
- A. A. Premet, Lie algebras without strong degeneration, Mat. Sb. (N.S.) 129(171) (1986), no. 1, 140–153 (Russian); English transl., Math. USSR-Sb. 57 (1987), no. 1, 151–164. MR 830100, DOI 10.1070/SM1987v057n01ABEH003060
- A. A. Premet, Inner ideals in modular Lie algebras, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 5 (1986), 11–15, 123 (Russian, with English summary). MR 876665
- Alexander Premet and Helmut Strade, Simple Lie algebras of small characteristic. I. Sandwich elements, J. Algebra 189 (1997), no. 2, 419–480. MR 1438184, DOI 10.1006/jabr.1996.6861
- Oleg N. Smirnov, Simple associative algebras with finite $\mathbf Z$-grading, J. Algebra 196 (1997), no. 1, 171–184. MR 1474168, DOI 10.1006/jabr.1997.7087
- Oleg N. Smirnov, Finite $\textbf {Z}$-gradings of Lie algebras and symplectic involutions, J. Algebra 218 (1999), no. 1, 246–275. MR 1704686, DOI 10.1006/jabr.1999.7880
- E. I. Zel′manov, Lie algebras with finite gradation, Mat. Sb. (N.S.) 124(166) (1984), no. 3, 353–392 (Russian). MR 752226
Bibliographic Information
- Antonio Fernández López
- Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain
- MR Author ID: 66255
- Email: emalfer@uma.es
- Received by editor(s): November 17, 2011
- Received by editor(s) in revised form: April 9, 2012
- Published electronically: December 4, 2013
- Additional Notes: The author was supported in part by the MEC and Fondos FEDER, MTM2010-19482
- Communicated by: Kailash C. Misra
- © Copyright 2013 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 142 (2014), 795-804
- MSC (2010): Primary 17B60, 17C50; Secondary 16N60
- DOI: https://doi.org/10.1090/S0002-9939-2013-11809-5
- MathSciNet review: 3148514
Dedicated: Dedicated to Professor Georgia Benkart