The Kauffman bracket skein module of two-bridge links
HTML articles powered by AMS MathViewer
- by Thang T. Q. Le and Anh T. Tran
- Proc. Amer. Math. Soc. 142 (2014), 1045-1056
- DOI: https://doi.org/10.1090/S0002-9939-2013-11835-6
- Published electronically: December 12, 2013
- PDF | Request permission
Abstract:
We calculate the Kauffman bracket skein module (KBSM) of the complement of all two-bridge links. For a two-bridge link, we show that the KBSM of its complement is free over the ring $\mathbb {C}[t^{\pm 1}]$ and when reducing $t=-1$, it is isomorphic to the ring of regular functions on the character variety of the link group.References
- G. W. Brumfiel and H. M. Hilden, $\textrm {SL}(2)$ representations of finitely presented groups, Contemporary Mathematics, vol. 187, American Mathematical Society, Providence, RI, 1995. MR 1339764, DOI 10.1090/conm/187
- Doug Bullock and Walter Lo Faro, The Kauffman bracket skein module of a twist knot exterior, Algebr. Geom. Topol. 5 (2005), 107–118. MR 2135547, DOI 10.2140/agt.2005.5.107
- Doug Bullock, The $(2,\infty )$-skein module of the complement of a $(2,2p+1)$ torus knot, J. Knot Theory Ramifications 4 (1995), no. 4, 619–632. MR 1361084, DOI 10.1142/S0218216595000260
- Doug Bullock, Rings of $\textrm {SL}_2(\textbf {C})$-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997), no. 4, 521–542. MR 1600138, DOI 10.1007/s000140050032
- Gerhard Burde and Heiner Zieschang, Knots, 2nd ed., De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 2003. MR 1959408
- Laurent Charles and Julien Marché, Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv. 87 (2012), no. 2, 409–431. MR 2914854, DOI 10.4171/CMH/258
- Charles Frohman, Răzvan Gelca, and Walter Lofaro, The A-polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc. 354 (2002), no. 2, 735–747. MR 1862565, DOI 10.1090/S0002-9947-01-02889-6
- Stavros Garoufalidis, On the characteristic and deformation varieties of a knot, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 291–309. MR 2172488, DOI 10.2140/gtm.2004.7.291
- Răzvan Gelca, On the relation between the $A$-polynomial and the Jones polynomial, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1235–1241. MR 1873802, DOI 10.1090/S0002-9939-01-06157-3
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Thang T. Q. Lê, The colored Jones polynomial and the $A$-polynomial of knots, Adv. Math. 207 (2006), no. 2, 782–804. MR 2271986, DOI 10.1016/j.aim.2006.01.006
- Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117. MR 818915, DOI 10.1090/memo/0336
- T. Le and A. Tran, On the AJ conjecture for knots, arXiv:1111.5258.
- Julien Marché, The skein module of torus knots, Quantum Topol. 1 (2010), no. 4, 413–421. MR 2733247, DOI 10.4171/QT/11
- Józef H. Przytycki, Fundamentals of Kauffman bracket skein modules, Kobe J. Math. 16 (1999), no. 1, 45–66. MR 1723531
- Józef H. Przytycki and Adam S. Sikora, On skein algebras and $\textrm {Sl}_2(\textbf {C})$-character varieties, Topology 39 (2000), no. 1, 115–148. MR 1710996, DOI 10.1016/S0040-9383(98)00062-7
- Robert Riley, Algebra for Heckoid groups, Trans. Amer. Math. Soc. 334 (1992), no. 1, 389–409. MR 1107029, DOI 10.1090/S0002-9947-1992-1107029-9
- Adam S. Sikora, Character varieties, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5173–5208. MR 2931326, DOI 10.1090/S0002-9947-2012-05448-1
- Vladimir G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 6, 635–704. MR 1142906, DOI 10.24033/asens.1639
Bibliographic Information
- Thang T. Q. Le
- Affiliation: School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, Georgia 30332
- ORCID: 0000-0003-4551-0285
- Email: letu@math.gatech.edu
- Anh T. Tran
- Affiliation: School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, Georgia 30332
- Address at time of publication: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210
- Email: tran.350@osu.edu
- Received by editor(s): November 7, 2011
- Received by editor(s) in revised form: April 17, 2012
- Published electronically: December 12, 2013
- Additional Notes: The first author was supported in part by the National Science Foundation
- Communicated by: Daniel Ruberman
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1045-1056
- MSC (2010): Primary 57N10; Secondary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-2013-11835-6
- MathSciNet review: 3148538