THERE IS NO STRICTLY SINGULAR CENTRALIZER ON L_p

FÉLIX CABELLO SÁNCHEZ

(Communicated by Thomas Schlumprecht)

Abstract. We prove that if Φ is a centralizer on L_p, where $0 < p < \infty$, then there is a copy of ℓ_2 inside L_p where Φ is bounded. If Φ is symmetric, then it is also bounded on a copy of ℓ_q, provided $0 < p < q < 2$. This shows that for a wide class of exact sequences $0 \to L_p \to Z \to L_p \to 0$ the quotient map is not strictly singular, which generalizes a recent result of Jesús Suárez.

1. Introduction

An operator acting between Banach or quasi-Banach spaces is said to be strictly singular if it is not an isomorphism on any infinite dimensional subspace of its domain.

Exact sequences of Banach or quasi-Banach spaces $0 \to Y \to Z \to X \to 0$ in which the quotient map $\pi : Z \to X$ is strictly singular has spurred moderate interest since the early studies on the ‘three space problem’. Let us call them ‘strictly singular sequences’. In some sense, if one has a strictly singular sequence in which the spaces X and Y are ‘nice’, the middle space Z must be ‘exotic’.

Amongst the most striking examples of this phenomenon one finds that for each $p \in (0, \infty)$ there is a strictly singular sequence

\[0 \longrightarrow \ell_p \longrightarrow Z_p \longrightarrow \ell_p \longrightarrow 0. \]

These were constructed by Kalton and Peck in [9]; see also [3].

More often than not the construction of strictly singular sequences is achieved by means of a quasilinear map from X to Y, and this is certainly the case for the Kalton-Peck sequences, whose associated quasilinear maps are centralizers (a special type of quasilinear map; see Section 1.2). There is a function space analogue of (1),

\[0 \longrightarrow L_p \longrightarrow ZF_p \longrightarrow L_p \longrightarrow 0, \]

whose associated quasilinear map is the ‘classical’ centralizer

\[\Omega(f) = f \log \left(\frac{|f|}{\|f\|} \right). \]
The space ZF_p was introduced in [5], although it arises quite naturally in interpolation theory; see [10] Section 3D.

Very recently Jesús Suárez proved the following remarkable results on the behaviour of Ω on L_p:

(a) For every $0 < p < \infty$, there is a copy of ℓ_2 in L_p where the restriction of Ω is bounded.
(b) If $0 < p < q < 2$, then Ω is bounded on a copy of ℓ_q inside L_p.

See [12] Propositions 3.1 and 4.1. Roughly this means that the sequence $[2]$ is not strictly singular because the quotient map is invertible on an isomorphic copy of ℓ_2 (or ℓ_q) inside L_p.

The purpose of this short note is to prove that (a) holds for all centralizers and (b) holds (at least) for symmetric centralizers. Our approach is based on a result by Kalton that describes centralizers as differentials of interpolation scales of Köthe function spaces from [7]. We also use results from [6] and a recent result of the author on the behaviour of centralizers acting between two different Lebesgue spaces [2].

1.1. Function spaces. Let L_0 denote the space of all real or complex measurable functions on the unit interval \mathbb{I}, where we identify two functions if they agree almost everywhere with respect to Lebesgue measure. A function space X is a linear subspace of L_0, together with a quasinorm $\| \cdot \|$ having the following properties:

- The unit ball $B_X = \{ f \in X : \| f \| \leq 1 \}$ is closed in L_0 for the topology of convergence in measure.
- If $f, g \in X, g \in L_0$ and $|g| \leq |f|$, then $g \in X$ and $\| g \| \leq \| f \|$.

Important examples of function spaces are the spaces L_p for $0 < p \leq \infty$. Given a function space X and $A \subset \mathbb{I}$ we write $X(A)$ for the space of those functions in X vanishing outside A.

We consider Köthe function spaces in the sense of [7]. Thus they are Banach function spaces whose norm satisfies the inequalities $\|hx\|_1 \leq \|x\|_X \leq \|hx\|_\infty$ for some everywhere positive functions h, k and for every $x \in X$.

1.2. Centralizers and extensions. Let X and Y be function spaces. A centralizer from X to Y is a homogeneous mapping $\Phi : X \to L_0$ satisfying the following condition: there is a constant C such that, for every $a \in L_\infty$ and for every $f \in X$, the difference $\Phi(af) - a\Phi(f)$ belongs to Y and

$$\|\Phi(af) - a\Phi(f)\|_Y \leq C\|a\|_\infty\|f\|_X.$$

When $Y = X$ we say that Φ is a centralizer on X.

Although we will not use it, we remark that every centralizer is quasilinear; that is, there is a constant Q such that for every $f, g \in X$ the difference $\Phi(f + g) - \Phi f - \Phi g$ falls in Y and one has $\|\Phi(f + g) - \Phi f - \Phi g\|_Y \leq Q(\|f\|_X + \|g\|_X)$.

A centralizer from X to Y gives rise to an exact sequence

$$0 \longrightarrow Y \overset{1}{\longrightarrow} Y \oplus_\Phi X \overset{\pi}{\longrightarrow} X \longrightarrow 0$$

as follows:

- The middle space is $Y \oplus_\Phi X = \{(g, f) \in L_0 \times X : g - \Phi(f) \in Y\}$ with the quasinorm given by $\|(g, f)\|_\Phi = \|g - \Phi f\|_Y + \|f\|_X$.
- $\iota(g) = (g, 0)$ and $\pi(g, f) = f$.

Actually only quasilinearity of Φ is required here.

We say that two centralizers Φ and Ψ are equivalent, and we write Φ ≈ Ψ if the difference takes values in Y and is bounded in the sense that \(\|\Phi(f) - \Psi(f)\|_Y \leq B\|f\|_X \) for some B and every \(f \in X \).

Let \(U \) be a subspace of \(X \) and suppose \(\Phi \) is bounded on \(U \) in the sense that \(\Phi \) maps \(U \) into \(Y \) (not \(L_0 \)) and \(\|\Phi(u)\|_Y \leq B\|u\|_X \) for some constant \(B \) and every \(u \in U \). Then the map \(s : U \to Y \oplus_\Phi X \) defined by \(s(u) = (0, u) \) is a bounded linear operator and \(\pi \circ s = I_U \). Thus \(\pi \) cannot be strictly singular if \(\Phi \) is bounded on some infinite dimensional subspace of \(X \).

Important examples of centralizers are the following (see [6], Section 3 and especially Theorem 3.1). Let \(\varphi : \mathbb{R}^2 \to \mathbb{R} \) be a Lipschitz function vanishing at the origin. Then the map \(L_p \to L_0 \) given by

\[
 f \mapsto f \varphi \left(\log \frac{|f|}{\|f\|_p}, \log \frac{|r_f|}{\|f\|_p} \right)
\]

is a (real, symmetric) centralizer on \(L_p \). Here \(r_g \) is the so-called rank-function of \(g \in L_0 \) defined by

\[
 r_g(t) = \lambda\{ s \in \mathbb{R}^+ : |g(s)| > |g(t)| \text{ or } s \leq t \text{ and } |g(s)| = |g(t)| \},
\]

which arises in real interpolation.

1.3. Real centralizers. Let \(X \) be a complex function space and let \(X^\Re = \Re(X) \) be a corresponding real function space. A centralizer on \(X \) is said to be real if it sends real functions into real functions. Clearly, every real centralizer on \(X \) induces a centralizer on \(X^\Re \) by restriction. On the other hand each centralizer \(\Phi \) on \(X^\Re \) extends to a real centralizer on \(X \) by the formula \(\Phi^R f = \Phi(u) + i\Phi(v) \), where \(u = \Re f \) and \(v = \Im f \). These processes are each inverse of the other, up to equivalence.

Moreover, if \(\Phi \) is any centralizer on \(X \), there are real centralizers \(\Phi_1 \) and \(\Phi_2 \) such that \(\Phi \approx \Phi_1 + i\Phi_2 \); see [7] Lemma 7.1.

2. Results

Let \(A \) be a Borel subset of \(\mathbb{I} \). A Rademacher sequence in \(A \) is a sequence \((r_n) \) in \(L_0(A) \) such that \(\lambda\{ t \in A : r_n(t) = 1 \} = \lambda\{ t \in A : r_n(t) = -1 \} = \frac{1}{2}\lambda(A) \) for all \(n \) and \(\mathbb{E}[r_n r_m | A] = 0 \) for \(n \neq m \).

Khintchine’s inequality states that if \((r_n) \) is a Rademacher sequence and \((t_n) \) is in \(\ell_2 \), then \(f = \sum_n t_n r_n \) belongs to \(L_s \) for every \(s \in (0, \infty) \) and, moreover, there is a constant \(M \) depending only on \(s \) and \(\lambda(A) \) such that

\[
 M^{-1} \|t_n\|_{\ell_2} \leq \|f\|_s \leq M\|t_n\|_{\ell_2}.
\]

Thus a Rademacher sequence spans a subspace isomorphic to \(\ell_2 \) in \(L_s \) for any \(s \in (0, \infty) \).

Our first result is based on certain ideas from complex interpolation. Let us indicate the minimal background one needs to understand the proof.

Let \(X_0 \) and \(X_1 \) be (complex) Köthe function spaces on the unit interval. Consider the closed strip \(\mathbb{S} = \{ z \in \mathbb{C} : 0 \leq \Re(z) \leq 1 \} \) and let \(\mathcal{F}(X_0, X_1) \) denote the space of bounded, continuous functions \(F : \mathbb{S} \to X_0 + X_1 \) having the following properties:

- \(F \) is analytic on the interior of \(\mathbb{S} \).
- \(F(k + it) \in X_k \) for each \(k = 0, 1 \) and all \(t \in \mathbb{R} \).
- For \(k = 0, 1 \), the map \(t \in \mathbb{R} \mapsto F(k + it) \in X_k \) is bounded and continuous.
Then $\mathcal{F} = \mathcal{F}(X_0, X_1)$ is a Banach space under the norm

$$\|F\|_{\mathcal{F}} = \sup\{\|F(k + it)\|_{X_k} : t \in \mathbb{R}, k = 0, 1\}.$$

For $\theta \in [0, 1]$ we define the interpolation space

$$X_\theta = [X_0, X_1]_\theta = \{f \in L_0 : f = F(\theta) \text{ for some } F \in \mathcal{F}\}$$

with the (quotient) norm $\|f\|_{X_\theta} = \inf\{\|F\|_{\mathcal{F}} : f = F(\theta)\}$.

The equation $[X_0, X_1]_\theta = X$ induces a ‘derivation’ on X as follows. We fix a small $\epsilon > 0$ and for each $f \in X$ we choose $F \in \mathcal{F}(X_0, X_1)$ such that $F(\theta) = f$, with $\|F\|_{\mathcal{F}} \leq (1 + \epsilon)\|f\|_X$. Then we put $\Omega(f) = F'(\theta)$. The map $\Omega : X \to L_0$ is a centralizer on X, and two centralizers obtained with different choices of F are equivalent.

An important result of Kalton [7, Theorem 7.6] states that if Φ is a real centralizer on the complex reflexive K"{o}the spaces.

Proposition 1. Let Φ be a centralizer on L_p, with $p > 1$, then there is a constant $c > 0$ and a couple of K"{o}the functions such that $L_p = [X_0, X_1]_{\theta = 1/2}$ with equivalent norms, in the sense that both spaces contain the same functions and there is M such that

$$M^{-1}\|f\|_p \leq \inf_{f = F(\theta)} \|F\|_{\mathcal{F}} \leq M\|f\|_p$$

for all $f \in L_p$, and $\Phi \approx c\Omega$, where Ω is the corresponding derivation on $X_{1/2} = L_p$.

Proof. It should be clear from the remarks in Section 1.3 that it suffices to prove the proposition assuming that Φ is a real centralizer on the complex L_p.

First suppose $p > 1$. Then by the result of Kalton quoted above, we know that there are a couple of K"{o}the spaces (X_0, X_1) and $c > 0$ such that $L_p = [X_0, X_1]_{1/2}$ and $\Phi \approx c\Omega$.

Let us take a look at Ω. First, by iteration, we have $L_p = [X_{1/4}, X_{3/4}]_{1/2}$ where $X_{k/4} = [X_0, X_{1/4}]_{k/4}$ for $k = 1, 3$ and both $X_{1/4}$ and $X_{3/4}$ are super-reflexive by [8, Theorem 5.8]. On the other hand, if $F \in \mathcal{F}(X_0, X_1)$, then the function G defined by $G(z) = F'(\frac{1}{2}(z + \frac{1}{2}))$ belongs to $\mathcal{F}(X_{1/4}, X_{3/4})$ and one has $\|G\|_{\mathcal{F}} \leq \|F\|_{\mathcal{F}}$, $G(\frac{1}{2}) = F(\frac{1}{2})$ and $G'(\frac{1}{2}) = \frac{1}{2}F'(\frac{1}{2})$.

Thus replacing the couple (X_0, X_1) by $(X_{1/4}, X_{3/4})$ preserves the induced centralizer, up to a constant factor, and so we may assume X_0 and X_1 are super-reflexive K"{o}the spaces.

Now, for $i = 0, 1$, take everywhere positive functions h_i and k_i so that $\|h_if\|_1 \leq \|f\|_{X_i} \leq \|k_if\|_\infty$ for all $f \in X_i$ and observe that for fixed $\delta > 0$ there is M large enough and a subset $B \subset \mathbb{H}$ with $\lambda(B) > 1 - \delta$ where $k_i \leq M$ and $h_i \geq 1/M$ for $i = 0, 1$.

It follows that $L_\infty(B) \subset X_i(B) \subset L_1(B)$, with continuous inclusions, and since X_i is super-reflexive it is also s_i-concave for some finite s_i, and so we have a continuous inclusion $L_{s_i}(B) \subset X_i(B)$ (see [4, p. 14]). Now taking $s = \max s_i$ we conclude that $L_s(B)$ embeds continuously into X_i, and so there is a constant M such that $\|f\|_{X_i} \leq M\|f\|_s$ for every $f \in L_s(B)$ and $i = 0, 1$.

Now, let (r_n) be a Rademacher sequence in $L_s(A)$, where $A \subset B$, and let R be the closed linear span of (r_n) in $L_s(A)$. Then, for $(\lambda_n) \in \ell_2$ the sum $\sum_n \lambda_n r_n$ is in...
Let \(\Phi \) where \(\Phi \) is a centralizer on \(L_p \) and \(\Phi \) is a symmetric centralizer on \(L_p \) and \(\Phi \) is a symmetric centralizer on \(L_p \).

A centralizer \(\Phi \) on \(L_p \) is said to be symmetric if there is a constant \(S \) such that
\[
\| \Phi(f) - \Phi(g) \|_p \leq S \| f - g \|_p
\]
for every \(f, g \in L_p \) and every measure preserving Borel automorphism \(\sigma \) of \(\mathbb{I} \).

The decreasing rearrangement of a real-valued \(f \in L_0 \) is defined by the formula
\[
f^*(t) = \inf_{\lambda(B) = t} \sup_{s \in A \setminus B} f(s) \quad (0 \leq t \leq 1)
\]
where \(B \) runs over the Borel subsets of \(\mathbb{I} \). That is, \(f^* \) is the only decreasing, right-continuous function having the same distribution as \(f \). It is a basic fact from measure theory that for each \(f \in L_0 \), there is a measure preserving Borel automorphism \(\sigma \) of \(\mathbb{I} \) (depending on \(f \)) such that \(f^* = f \circ \sigma \) (almost everywhere), and so \(f^* \) is a true rearrangement of \(f \); see [11, Lemma 2].

Note that if \(\Phi \) is a symmetric centralizer on \(L_p \) and \(f^* = f \circ \sigma \), then \(\| \Phi(f) - (\Phi(f^*) \circ \sigma^{-1}) \|_p \leq S \| f \|_p \) and so the map \(\Phi_s(f) = (\Phi(f^*)) \circ \sigma^{-1} \) is a symmetric centralizer equivalent to \(\Phi \) with the additional property that the distribution of \(\Phi_s(f) \) depends only on the distribution of \(f \).

We emphasize that, in general, centralizers take values in \(L_0 \). For symmetric centralizers we have, however, the following.

Lemma 1. Suppose \(0 < p < r < \infty \) and let \(\Phi \) be a symmetric centralizer on \(L_p \). If \(f \in L_r \), then \(\Phi f \in L_p \).

Proof. It suffices to prove the lemma for real spaces. Let \(\Phi_r : L_r \to L_0 \) be the restriction of \(\Phi \) to \(L_r \). This is a centralizer from \(L_r \) to \(L_p \), so by the main result in [12] \(\Phi_r \) must be trivial and there is \(\phi \in L_0 \) and a constant \(M \) such that
\[
\| \Phi_r(f) - \phi f \|_p \leq M \| f \|_r \quad (f \in L_r).
\]
We claim that \(\phi \in L_s \), where \(s^{-1} + r^{-1} = p^{-1} \). By the Hölder inequality this implies that \(\phi f \in L_p \), and the same occurs for \(\Phi(f) = \Phi_r(f) \). To see this, observe that since \(f \mapsto \phi f \) is equivalent to \(\Phi_r \) it is a symmetric centralizer from \(L_r \) to \(L_p \), and so there is a constant \(S \) such that
\[
\| (\phi \circ \sigma)(f \circ \sigma) - \phi(f \circ \sigma) \|_p \leq S \| f \|_r \quad (f \in L_r)
\]
whenever σ is a measure preserving automorphism of the unit interval. Now, since for every $g \in L_s$ one has $\|g\|_s = \sup_{\|f\|_p \leq 1} \|gf\|_p$, we see that $\|\phi \circ \sigma - \phi\|_s \leq M'$ for some M' independent on σ. By symmetry one also has $\|\phi^* \circ \sigma - \phi^*\|_s \leq M'$, where ϕ^* is the decreasing arrangement of ϕ and σ is as before. In particular $\|\phi^* \circ \sigma - \phi^*\|_s$ is finite when $\sigma(t) = 1 - t$. Let $m = \phi^*(\frac{1}{2})$ be the median of ϕ. Now, since ϕ^* is decreasing, $\phi^* \circ \sigma$ is increasing and both agree with m at $t = \frac{1}{2}$, we see that

$$\|\phi - m1\|_s = \|\phi^* - m1\|_s \leq \|\phi^* \circ \sigma - \phi^*\|_s$$

is finite and $\phi \in L_s$.

We are now ready to prove the following.

Proposition 2. Let $0 < p < q < 2$. There is a subspace U of L_p isomorphic to ℓ_q where the restriction of any symmetric centralizer is bounded.

Proof. It suffices to prove the result for real spaces. Moreover, we may and do assume that the distribution of $\Phi(f)$ depends only on that of f.

We proceed as in [12, Proof of Proposition 4.1]. For fixed $q \in (p, 2)$ we consider a q-stable random variable $\vartheta \in L_p$ and a sequence of independent copies (ϑ_n). We recall that a random variable is said to be q-stable if its characteristic function (Fourier transform) is $e^{-|t|^q/q}$. We refer the reader to [1, Chapter 6, Section 4] for basic information on stable variables. Here we use the following facts:

- If ϑ is q-stable, then $E[|\vartheta|^r] < \infty$ for $p < r < q$.
- If (ϑ_n) is a sequence on independent copies of a q-stable random variable ϑ and (λ_n) is a sequence normalized in ℓ_q, then $\sum_n \lambda_n \vartheta_n$ has the same distribution as ϑ.

Therefore the map $(\lambda_n) \in \ell_q \mapsto \sum_n \lambda_n \vartheta_n \in L_p$ is well defined and it is an isometric embedding whose image we denote by U. Moreover, by the lemma, $\Phi(\vartheta)$ belongs to L_p, and then for (λ_n) normalized ℓ_q we have $\|\Phi(\sum \lambda_n \vartheta_n)\|_p = \|\Phi(\vartheta)\|_p$, and so Φ is bounded on U.

Problem. Is there a strictly singular sequence $0 \to L_p \to Z \to L_p \to 0$ for $0 < p < 2$? (See [3, Theorem 2(c)] for the case $2 \leq p < \infty$.)

Acknowledgements

The author thanks Paco Hernández for his help with Köthe spaces. He is grateful to the referee for some remarks that improved the paper.

References

THERE IS NO STRICTLY SINGULAR CENTRALIZER ON L_p

Departamento de Matemáticas, Universidad de Extremadura, 06071-Badajoz, Spain
E-mail address: fcabello@unex.es