POLYNOMIAL NUMERICAL INDICES OF $C(K)$ AND $L_1(\mu)$

DOMINGO GARCÍA, BOGDAN C. GRECU, MANUEL MAESTRE, MIGUEL MARTÍN, AND JAVIER MERÍ

(Communicated by Thomas Schlumprecht)

Abstract. We estimate the polynomial numerical indices of the spaces $C(K)$ and $L_1(\mu)$.

1. Introduction

For a given real or complex Banach space X and a positive integer k, the k-order polynomial numerical index of X was introduced by Choi et al. in 2006 as follows:

$$n^{(k)}(X) = \inf \{ v(P) : P \in P^{(k) X; X}, \|P\| = 1 \}$$

$$= \max \{ M \geq 0 : M\|P\| \leq v(P) \text{ for all } P \in P^{(k) X; X} \}.$$

$P^{(k) X; X}$ denotes the space of k-homogeneous continuous polynomials and $v(\cdot)$ is the numerical radius, which is defined as

$$v(P) = \sup \{ \|x^*(P(x))\| : x \in X, x^* \in X^*, \|x\| = \|x^*\| = 1, x^*(x) = 1 \}$$

for $P \in P^{(k) X; X}$ (X^* represents the dual space of X). When $k = 1$, we are actually dealing with the classical numerical radius of operators due to Lumer and Bauer in the 1960’s and with the index of a Banach space introduced by Lumer in 1970. The extension of the numerical radius to polynomials and other settings was initiated by Harris in the 1970’s. We refer the reader to the survey paper [7] for a detailed account and background on numerical radii and numerical indices. More recent results on polynomial numerical indices can be found in [3,5,8,9,11–13].

Some spaces for which the polynomial numerical indices have been estimated are the following. In the complex case, $n^{(k)}(C_0(L)) = 1$ for every $k \in \mathbb{N}$ and every locally compact space L, and $n^{(2)}(\ell_1) \leq \frac{4}{3}$. In the real case, $n^{(k)}(\mathbb{R}) = 1$ and

$$n^{(2)}(c_0) = n^{(2)}(\ell_1) = n^{(2)}(\ell_\infty) = 1/2.$$
The main results obtained in this paper are the following. In the real case, \(n^{(2)}(C(K)) = \frac{1}{2} \) for every compact Hausdorff space \(K \) with at least two points and \(n^{(2)}(L_1(\mu)) = \frac{1}{2} \) for every positive measure \(\mu \). In the complex case, \(n^{(2)}(X) \geq \frac{1}{3} \) for every lush space and \(1/3 \leq n^{(2)}(L_1(\mu)) \leq 1/2 \) for every positive measure \(\mu \).

Given a compact Hausdorff space \(K \), we denote by \(C(K) \) the Banach space of all continuous functions from \(K \) into \(\mathbb{R} \) or \(\mathbb{C} \). For a locally compact Hausdorff space \(L \), we denote by \(C_0(L) \) the Banach space of all continuous functions from \(L \) into \(\mathbb{R} \) or \(\mathbb{C} \) vanishing at infinity. Also, given a measure space \((\Omega, \Sigma, \mu)\), we denote by \(L_1(\mu) \) the Banach space of all (equivalence classes of) integrable functions on \((\Omega, \Sigma, \mu)\). As usual, \(c_0 \), \(\ell_1 \) and \(\ell_\infty \) will denote the classical Banach spaces of all null, absolutely summable and bounded sequences, respectively.

2. The results

Our first aim is to show that, in the real case, \(n^{(2)}(C(K)) = \frac{1}{2} \) for every compact Hausdorff space with at least two points. We may also get some estimations on the polynomial numerical indices of higher degree of real \(C(K) \) spaces improving the results obtained in [9] Corollary 2.5.

Theorem 2.1. Let \(K \) be a compact Hausdorff space with at least two points. Then

\[
n^{(2)}(C(K)) = \frac{1}{2} \quad \text{and} \quad n^{(2k)}(C(K)) \leq \frac{1}{2^k} \quad (k \geq 2)
\]

hold in the real case.

Proof. Let us start with the case of degree 2. By [9] Corollary 2.4, \(n^{(2)}(C(K)) \geq \frac{1}{2} \).

To prove the other inequality, we fix a point \(t_0 \in K \), consider the polynomial of degree two on \(C(K) \) given by

\[
P(f) = f(t_0)^2 - \frac{1}{2} f^2 \quad (f \in C(K)),
\]

where \(1 \) stands for the unit function, and we observe that \(\|P\| \geq 1 \) and \(v(P) = \frac{1}{2} \).

Indeed, we consider a point \(t_1 \in K \setminus \{t_0\} \) and construct a norm-one function \(f \in C(K) \) satisfying \(f(t_0) = 1 \) and \(f(t_1) = 0 \). Then,

\[
\|P(f)\| \geq |P(f)(t_1)| = 1.
\]

On the other hand, since all elements in \(C(K) \) attain their norms, we have (see [14] Theorem 2.5) that

\[
v(P) = \sup \{ |P(f)(t)| : f \in C(K), \ t \in K, \ |f| = f(t) = 1 \}.
\]

Therefore, in our case,

\[
v(P) = \sup \left\{ \left| f(t_0)^2 - \frac{1}{2} \right| : f \in C(K), \ |f| = 1 \right\} = \frac{1}{2},
\]

which finishes the proof.

For higher degrees, we fix \(k \in \mathbb{N} \) with \(k \geq 2 \), consider the polynomial \(P_k \in \mathcal{P}^{2k}(C(K), C(K)) \) given by \(P_k(f) = P(f)^k \) for every \(f \in C(K) \) (where \(P \) is the polynomial defined above), and we observe that \(\|P_k\| \geq 1 \) and \(v(P_k) = \frac{1}{2^k} \). □
POLYNOMIAL NUMERICAL INDICES OF $C(K)$ AND $L_1(\mu)$

With the same proof, considering bump functions instead of the unit function, the result above adapts to $C_0(L)$ for every locally compact Hausdorff space L with at least two points.

Corollary 2.2. Let L be a locally compact Hausdorff space L with at least two points. Then

$$n^{(2)}(C_0(L)) = \frac{1}{2} \quad \text{and} \quad n^{(2k)}(C_0(L)) \leq \frac{1}{2^k} \ (k \geq 2)$$

hold in the real case.

Remark 2.3. It is easy to extend the proof of Theorem 2.1 to any closed subalgebra with dimension greater than one of a real space $C(K)$. But, actually, all closed subalgebras of a real $C(K)$ space are of the form

$$\{f \in C(K) : f(t_i) = \lambda_i f(s_i) \text{ for all } i \in I\}$$

for a suitable index set I and suitable families $\{t_i\}, \{s_i\} \subset K$ and $\{\lambda_i\} \subset \{0, 1\}$ (see [10, p. 68]).

Our next result deals with lush spaces. For a Banach space X, by B_X and S_X we will denote the open unit ball and the unit sphere of X, respectively. A Banach space X is said to be lush [1] if for every $x, y \in S_X$ and every $\varepsilon > 0$, there is a slice $S = \{x \in B_X : \text{Re } x^*(x) > 1 - \varepsilon\}$ with $x^* \in S_{X^*}$ such that $x \in S$ and the distance of y to the absolutely convex hull of S is less than ε. Lush spaces have numerical index 1 [1, Proposition 2.2], but it has been very recently shown that the converse result is not true [6]. Examples of lush spaces are $L_1(\mu)$ spaces and their isometric preduals, in particular, $C(K)$ spaces. In [9], inequalities for the polynomial numerical indices of real lush spaces were given. In particular, it is proved that $n^{(2)}(X) \geq 1/2$ for every real lush space and that the equality holds for c_0, ℓ_1 and ℓ_∞, for instance. Actually, our Theorem 2.1 gives that such an equality also holds for all $C(K)$ spaces. Our next goal is to give a similar result to the one of [9] for complex lush spaces. We do not know whether this result is sharp.

Theorem 2.4. Let X be a complex lush space. Then

$$n^{(2)}(X) \geq \frac{1}{3}.$$

Proof. For $P \in \mathcal{P}(2X; X)$ with $\|P\| = 1$ and $0 < \varepsilon < 1$ fixed, take $x_0 \in S_X$ such that $\|P(x_0)\| > 1 - \varepsilon$ and apply the definition of lushness to x_0 and $P(x_0)/\|P(x_0)\|$ to find $x^* \in S_{X^*}$ with

$$P(x_0)/\|P(x_0)\| \in S := \{x \in B_X : \text{Re } x^*(x) > 1 - \frac{\varepsilon^2}{4}\},$$

$\lambda_1, \ldots, \lambda_n \in [0, 1], \sum_{j=1}^n \lambda_j \leq 1, \mu_1, \ldots, \mu_n$, complex numbers of modulus one, and $x_1, \ldots, x_n \in S$ satisfying

$$\left\|x_0 - \sum_{j=1}^n \lambda_j \mu_j x_j\right\| < \frac{\varepsilon^2}{4}.$$
With this it is readily checked that

\[(2.1) \quad \left\| P(x_0) - P \left(\sum_{j=1}^{n} \lambda_j \mu_j x_j \right) \right\| \leq 2 \| \hat{P} \| \frac{\varepsilon^2}{4}, \]

where \(\hat{P} \) is the associated symmetric bilinear map to \(P \).

Our goal is to estimate \(x^* \left(P \left(\sum_{j=1}^{n} \lambda_j \mu_j x_j \right) \right) \) from the above and below. We can write

\[x^* \left(P \left(\sum_{j=1}^{n} \lambda_j \mu_j x_j \right) \right) \leq \left(\sum_{j=1}^{n} \lambda_j^2 \right) x^* \left(P(x_j) \right) + 2 \sum_{1 \leq j < k \leq n} \lambda_j \lambda_k \left| x^* \left(\hat{P}(x_j, x_k) \right) \right|.

Moreover, by using \([9, Lemma 2.3]\) one obtains

\[x^* \left(P(y) \right) \leq v(P) + \varepsilon + 2 \| \hat{P} \| \varepsilon \]

for every \(y \in S \). This, together with the fact that \(x_j, \frac{x_j + x_k}{2} \in S \), tells us that

\[x^* \left(\hat{P}(x_j, x_k) \right) \leq 2 \left[x^* \left(P \left(\frac{x_j + x_k}{2} \right) \right) + \frac{1}{2} x^* \left(P(x_j) \right) + \frac{1}{2} x^* \left(P(x_k) \right) \right] \leq 3 \left[v(P) + \varepsilon + 2 \| \hat{P} \| \varepsilon \right]. \]

Hence, we can continue the above estimation as follows:

\[x^* \left(P \left(\sum_{j=1}^{n} \lambda_j \mu_j x_j \right) \right) \leq \left(\sum_{j=1}^{n} \lambda_j^2 + 6 \sum_{1 \leq j < k \leq n} \lambda_j \lambda_k \right) \left(v(P) + \varepsilon + 2 \| \hat{P} \| \varepsilon \right) \leq \sup_{\lambda_j \in [0,1], \lambda_1 + \cdots + \lambda_n = 1} \left(\sum_{j=1}^{n} \lambda_j^2 + 6 \sum_{1 \leq j < k \leq n} \lambda_j \lambda_k \right) \left(v(P) + \varepsilon + 2 \| \hat{P} \| \varepsilon \right) = \left(3 - \frac{2}{n} \right) \left(v(P) + \varepsilon + 2 \| \hat{P} \| \varepsilon \right) \leq 3 \left(v(P) + \varepsilon + 2 \| \hat{P} \| \varepsilon \right). \]

On the other hand, using \((2.1)\) we have that

\[x^* \left(P \left(\sum_{j=1}^{n} \lambda_j \mu_j x_j \right) \right) \geq x^* \left(P(x_0) \right) - x^* \left(P \left(\sum_{j=1}^{n} \lambda_j \mu_j x_j \right) \right) \geq \left\| P(x_0) \right\| \left| x^* \left(\frac{P(x_0)}{\| P(x_0) \|} \right) - x^* \left(P \left(\sum_{j=1}^{n} \lambda_j \mu_j x_j \right) \right) \right| \geq (1 - \varepsilon) \left(1 - \frac{\varepsilon^2}{4} \right) - 2 \| \hat{P} \| \frac{\varepsilon^2}{4}. \]
Therefore,
\[
(1 - \varepsilon) \left(1 - \frac{\varepsilon^2}{4}\right) - 2\|\tilde{P}\|\frac{\varepsilon^2}{4} \leq 3(v(P) + \varepsilon + 2\|\tilde{P}\|\varepsilon)
\]
which, letting \(\varepsilon \to 0\), gives \(\frac{1}{3} \leq v(P)\), finishing the proof. \(\Box\)

For \(L_1(\mu)\) spaces, we get the following result.

Theorem 2.5. Let \((\Omega, \Sigma, \mu)\) be a measure space so that \(\dim(L_1(\mu)) \geq 2\). Then the following hold:

\[
n^{(2)}(L_1(\mu)) = \frac{1}{2} \quad \text{in the real case and}
\]

\[
\frac{1}{3} \leq n^{(2)}(L_1(\mu)) \leq \frac{1}{2} \quad \text{in the complex case.}
\]

Proof. We start by showing that \(n^{(2)}(L_1(\mu)) \leq \frac{1}{2}\). To do so, we distinguish two cases depending on whether or not \(\mu\) is purely atomic. If \(\mu\) is purely atomic, since \(\dim(L_1(\mu)) \geq 2\), we can write \(L_1(\mu) = \ell_1(\Gamma)\) with the cardinal of \(\Gamma\) greater than or equal to 2, and then \(n^{(2)}(L_1(\mu)) \leq \frac{1}{2}\) (see [4, p. 141]). Otherwise if \(\mu\) has a non-atomic part, then it is possible to find disjoint sets \(A, B \in \Sigma\) satisfying \(0 < \mu(A) = \mu(B) < \infty\). Thus, we can consider the polynomial \(P \in \mathcal{P}(\ell_1^2(L_1(\mu), L_1(\mu))\) given by

\[
P(f) = \left(\frac{1}{2} f \int_A f^2 d\mu + 2 f \int_B f d\mu\right) \chi_A + \left(-f \int_A f d\mu - \frac{1}{2} f \int_B f d\mu\right) \chi_B
\]

\((f \in L_1(\mu))\) which satisfies \(\|P\| \geq 1\) and \(v(P) \leq \frac{1}{2}\). Indeed, for \(f = \frac{1}{2\mu(A)} \chi_{A \cup B} \in S_{L_1(\mu)}\) it is immediate to check that

\[
P(f) = \frac{5}{8\mu(A)} \chi_A - \frac{3}{8\mu(A)} \chi_B,
\]

and so \(\|P\| \geq \|P(f)\| = 1\). To estimate \(v(P)\), given \(f \in S_{L_1(\mu)}\) and \(\Phi \in S_{L_1(\mu)^*}\) with \(\Phi(f) = 1\), we write \(\phi\) for the unique element in \(S_{L_\infty(\mu)}\) which represents \(\Phi\) (i.e. \(\Phi(h) = \int \phi h d\mu\) for every \(h \in L_1(\mu)\)) and observe that

\[
\int_A f \phi d\mu = \int_A |f| d\mu \quad \text{and} \quad \int_B f \phi d\mu = \int_B |f| d\mu.
\]

Hence, we can write

\[
|\Phi(Pf)|
\]

\[
= \left|\left(\frac{1}{2} f \int_A f^2 d\mu + 2 f \int_B f d\mu\right) \int_A f \phi d\mu - \left(\int_A f^2 d\mu + \frac{1}{2} f \int_B f d\mu\right) \int_B f \phi d\mu\right|
\]

\[
= \left|\left(\frac{1}{2} \int_A |f| d\mu - \int_B |f| d\mu\right) \int_A f \phi d\mu + \left(2 \int_A |f| d\mu - \frac{1}{2} \int_B |f| d\mu\right) \int_B f \phi d\mu\right|
\]

\[
\leq \frac{1}{2} \int_A |f| d\mu - \int_B |f| d\mu \int_A |f| d\mu + 2 \int_A |f| d\mu - \frac{1}{2} \int_B |f| d\mu \int_B |f| d\mu.
\]
Now, since \(\int_A |f| \, d\mu + \int_B |f| \, d\mu \leq 1 \), we have

\[
|\Phi(P^f)| \leq \max_{x, y \geq 0 \atop x + y \leq 1} \frac{1}{2} |x - y| + \frac{1}{2} |2x - 1 - y| = 1,
\]

which gives \(v(P) \leq \frac{1}{2} \) and, therefore, \(n^{(2)}(L_1(\mu)) \leq \frac{1}{2} \). Finally, the remaining inequalities follow from [9, Theorem 2.1], Theorem 2.4 and the fact that \(L_1(\mu) \) is a lush space. \(\square \)

REFERENCES

POLYNOMIAL NUMERICAL INDICES OF $C(K)$ AND $L_1(\mu)$

Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain

E-mail address: domingo.garcia@uv.es

School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, United Kingdom

E-mail address: b.grecu@qub.ac.uk

Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain

E-mail address: manuel.maestre@uv.es

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

E-mail address: mmartins@ugr.es

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

E-mail address: jmeri@ugr.es

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use