Some toy Furstenberg sets and projections of the four-corner Cantor set
HTML articles powered by AMS MathViewer
- by Daniel M. Oberlin
- Proc. Amer. Math. Soc. 142 (2014), 1209-1215
- DOI: https://doi.org/10.1090/S0002-9939-2013-11857-5
- Published electronically: December 26, 2013
- PDF | Request permission
Abstract:
We give lower bounds for the Hausdorff dimensions of some model Furstenberg sets.References
- Michael Bateman and Alexander Volberg, An estimate from below for the Buffon needle probability of the four-corner Cantor set, Math. Res. Lett. 17 (2010), no. 5, 959–967. MR 2727621, DOI 10.4310/MRL.2010.v17.n5.a12
- M. Bond, I. Laba, and A. Volberg, Buffon’s needle estimates for rational product Cantor sets, arXiv:1109.1031.
- J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), no. 2, 334–365. MR 1982147, DOI 10.1007/s000390300008
- Jean Bourgain, The discretized sum-product and projection theorems, J. Anal. Math. 112 (2010), 193–236. MR 2763000, DOI 10.1007/s11854-010-0028-x
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- J.-P. Kahane, Trois notes sur les ensembles parfaits linéaires, Enseign. Math. (2) 15 (1969), 185–192 (French). MR 245734
- Robert Kaufman, On Hausdorff dimension of projections, Mathematika 15 (1968), 153–155. MR 248779, DOI 10.1112/S0025579300002503
- Nets Hawk Katz and Terence Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York J. Math. 7 (2001), 149–187. MR 1856956
- F. Nazarov, Y. Peres, and A. Volberg, The power law for the Buffon needle probability of the four-corner Cantor set, Algebra i Analiz 22 (2010), no. 1, 82–97; English transl., St. Petersburg Math. J. 22 (2011), no. 1, 61–72. MR 2641082, DOI 10.1090/S1061-0022-2010-01133-6
- Daniel M. Oberlin, Restricted Radon transforms and projections of planar sets, Canad. Math. Bull. 55 (2012), no. 4, 815–820. MR 2994685, DOI 10.4153/CMB-2011-064-6
- Elias M. Stein and Rami Shakarchi, Real analysis, Princeton Lectures in Analysis, vol. 3, Princeton University Press, Princeton, NJ, 2005. Measure theory, integration, and Hilbert spaces. MR 2129625
- Thomas Wolff, Recent work connected with the Kakeya problem, Prospects in mathematics (Princeton, NJ, 1996) Amer. Math. Soc., Providence, RI, 1999, pp. 129–162. MR 1660476
Bibliographic Information
- Daniel M. Oberlin
- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306
- Email: oberlin@math.fsu.edu
- Received by editor(s): April 25, 2012
- Published electronically: December 26, 2013
- Communicated by: Alexander Iosevich
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 142 (2014), 1209-1215
- MSC (2010): Primary 28A75
- DOI: https://doi.org/10.1090/S0002-9939-2013-11857-5
- MathSciNet review: 3162243